Descripteur
Documents disponibles dans cette catégorie (8)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China / Liangting Zheng in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China Type de document : Article/Communication Auteurs : Liangting Zheng, Auteur ; Jia Li, Auteur ; Wenying Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6519 - 6537 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] diagramme de Voronoï
[Termes IGN] données médicales
[Termes IGN] données routières
[Termes IGN] épidémie
[Termes IGN] interpolation inversement proportionnelle à la distance
[Termes IGN] interpolation par pondération de zones
[Termes IGN] maladie virale
[Termes IGN] médecine humaine
[Termes IGN] secours d'urgence
[Termes IGN] Yunnan (Chine)Résumé : (auteur) COVID-19 poses a major threat to global health care systems, and the recent surge in mortality rates confirms the importance of timely access to care. The capacity of medical service providers is reflected both in the spatial accessibility of medical institutions and in the spatial scope of their services. Therefore, this study aims to investigate the spatial scope of services and spatial accessibility of COVID-19-designated hospitals in Yunnan Province, China. Data are collected from multiple sources and included COVID-19 case data, road data, and data from designated hospitals for COVID-19 in Yunnan Province. The optimal spatial service range for designated hospitals is delineated using a weighted Voronoi diagram that takes into account the number of medical staff and the number of beds in the hospital. Traffic accessibility coefficients are introduced to analyze the spatial accessibility of COVID-19-designated hospitals, and the spatial accessibility of each designated hospital is visualized using the inverse distance weighting interpolation algorithm. The results show the following: (1) COVID-19 cases in Yunnan Province are concentrated in the central and northern regions. The largest single cells in the weighted Voronoi diagram are mainly Pu'er (59168 km2), Honghe (35569 km2), and Baoshan (46795 km2), and the time cost of attainting medical treatment is greater for residents in marginal areas. (2) Within the service space of designated hospitals, 90.24% of patients could obtain medical assistance within 2 h. Those in 52 (36.36%) counties within a municipal jurisdiction could obtain medical services within 2 h, and 76.47% of counties have above-average spatial accessibility. (3) Medical resources in Yunnan Province should be shifted toward the high-risk east-central region and the less spatially accessible in southern and western regions. Numéro de notice : A2022-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943008 Date de publication en ligne : 09/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101674
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6519 - 6537[article]Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]Acquisition lasergrammétrique d’ouvrages d’art pour l’interopérabilité BIM-SIG, cas pratique du syndicat mixte "Routes de Guadeloupe" / Sonia Sermanson (2021)
Titre : Acquisition lasergrammétrique d’ouvrages d’art pour l’interopérabilité BIM-SIG, cas pratique du syndicat mixte "Routes de Guadeloupe" Type de document : Mémoire Auteurs : Sonia Sermanson, Auteur Editeur : Strasbourg : Institut National des Sciences Appliquées INSA Strasbourg Année de publication : 2021 Importance : 76 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire de soutenance de diplôme d'ingénieur INSA spécialité TopographieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes IGN] données laser
[Termes IGN] données routières
[Termes IGN] Guadeloupe
[Termes IGN] interopérabilité
[Termes IGN] jumeau numérique
[Termes IGN] maquette numérique
[Termes IGN] ModelBuilder
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] système d'information géographiqueIndex. décimale : INSAS Mémoires d'ingénieur de l'INSA Strasbourg - Topographie, ex ENSAIS Résumé : (auteur) Cette étude, portant sur les interactions entre les domaines du BIM et du SIG, s’inscrit dans une volonté de valoriser les modèles numériques 3D réalisés selon le processus BIM. Son contexte implique le syndicat mixte « Routes de Guadeloupe », qui souhaite valoriser ces modèles. Ce sujet propose donc des applications et des solutions, notamment à travers le service SIG et l'unité de surveillance d’ouvrage de ce syndicat mixte. C’est donc dans une optique d’exploitation-maintenance que se projette cet écrit. Le sujet retrace les étapes de la production de la donnée 3D à son exploitation, en passant par les phases d’acquisition, de traitement, de définition de modélisation, et d’intégration dans l’environnement d'un SIG. Note de contenu : Introduction
1- Contexte de l'étude
2- Etat de l'art
3- Acquisition et traitement des données
4- Les modèles BIM d'ouvrages d'art dans le SIG
Conclusion généraleNuméro de notice : 28607 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Mémoire ingénieur INSAS Organisme de stage : SL Topo En ligne : http://eprints2.insa-strasbourg.fr/4522/2/Memoire_PFE_BIM_SIG_SERMANSON_SONIA.pd [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99452 Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)
[article]
Titre : Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher , Auteur ; Guillaume Saint Pierre, Auteur ; Mohammad Ghasemi Hamed, Auteur ; Sébastien Mustière , Auteur ; Olivier Orfila, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : pp 101 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse fonctionnelle (mathématiques)
[Termes IGN] apprentissage profond
[Termes IGN] carte routière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] détection d'objet
[Termes IGN] données routières
[Termes IGN] feu de circulation
[Termes IGN] inférence
[Termes IGN] reconnaissance de formes
[Termes IGN] signalisation routière
[Termes IGN] trace GPS
[Termes IGN] trafic routier
[Termes IGN] transformation en ondelettes
[Termes IGN] vitesseRésumé : (auteur) The increasing availability of large-scale global positioning system data stemming from in-vehicle-embedded terminal devices enables the design of methods deriving road network cartographic information from drivers’ recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-m-long road span. We proposed three different ways of deriving features: The first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms, and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that random forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs. Numéro de notice : A2020-336 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41060-019-00197-x Date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1007/s41060-019-00197-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93755
in International Journal of Data Science and Analytics JDSA > vol 10 n° 1 (June 2020) . - pp 101 - 119[article]Documents numériques
peut être téléchargé
Traffic signal detection ... - preprintAdobe Acrobat PDF Exploring the potential of deep learning segmentation for mountain roads generalisation / Azelle Courtial in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
[article]
Titre : Exploring the potential of deep learning segmentation for mountain roads generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Achraf El Ayedi, Auteur ; Guillaume Touya , Auteur ; Xiang Zhang, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 338 ; 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] 1:25.000
[Termes IGN] 1:250.000
[Termes IGN] Alpes (France)
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données routières
[Termes IGN] données vectorielles
[Termes IGN] généralisation automatique de données
[Termes IGN] montagne
[Termes IGN] route
[Termes IGN] segmentation
[Termes IGN] symbole graphique
[Termes IGN] virage
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Among cartographic generalisation problems, the generalisation of sinuous bends in mountain roads has always been a popular one due to its difficulty. Recent research showed the potential of deep learning techniques to overcome some remaining research problems regarding the automation of cartographic generalisation. This paper explores this potential on the popular mountain road generalisation problem, which requires smoothing the road, enlarging the bend summits, and schematising the bend series by removing some of the bends. We modelled the mountain road generalisation as a deep learning problem by generating an image from input vector road data, and tried to generate it as an output of the model a new image of the generalised roads. Similarly to previous studies on building generalisation, we used a U-Net architecture to generate the generalised image from the ungeneralised image. The deep learning model was trained and evaluated on a dataset composed of roads in the Alps extracted from IGN (the French national mapping agency) maps at 1:250,000 (output) and 1:25,000 (input) scale. The results are encouraging as the output image looks like a generalised version of the roads and the accuracy of pixel segmentation is around 65%. The model learns how to smooth the output roads, and that it needs to displace and enlarge symbols but does not always correctly achieve these operations. This article shows the ability of deep learning to understand and manage the geographic information for generalisation, but also highlights challenges to come. Numéro de notice : A2020-295 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9050338 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.3390/ijgi9050338 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95131
in ISPRS International journal of geo-information > vol 9 n° 5 (May 2020) . - n° 338 ; 21 p.[article]Extending Processing Toolbox for assessing the logical consistency of OpenStreetMap data / Sukhjit Singh Sehra in Transactions in GIS, Vol 24 n° 1 (February 2020)PermalinkPermalinkGeospatial information integration for authoritative and crowd sourced road vector data / H. Du in Transactions in GIS, vol 16 n° 4 (August 2012)Permalink