Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > hydrographie de surface > bassin hydrographique
bassin hydrographiqueSynonyme(s)Bassin-versant Bassin versantVoir aussi |
Documents disponibles dans cette catégorie (428)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level / Laxmi Gupta in Journal of maps, vol 18 n° 2 (February 2023)
[article]
Titre : A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level Type de document : Article/Communication Auteurs : Laxmi Gupta, Auteur ; Jagabandhu Dixit, Auteur Année de publication : 2023 Article en page(s) : 33 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] cartographie des risques
[Termes IGN] eau de surface
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] planification
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] ruissellement
[Termes IGN] système d'information géographique
[Termes IGN] vulnérabilitéRésumé : (auteur) Floods are frequently occurring events in the Assam region due to the presence of the Brahmaputra River and the heavy monsoon period. An efficient and reliable methodology is utilized to prepare a GIS-based flood risk map for the Assam region, India. At the regional and administrative level, the flood hazard index (FHI), flood vulnerability index (FVI), and flood risk index (FRI) are developed using multi-criteria decision analysis (MCDA) – analytical hierarchy process (AHP). The selected indicators define the topographical, geological, meteorological, drainage characteristics, land use land cover, and demographical features of Assam. The results show that more than 70%, 57.37%, and 50% of the total area lie in moderate to very high FHI, FVI, and FRI classes, respectively. The proposed methodology can be applied to identify high flood risk zones and to carry out effective flood risk management and mitigation strategies in vulnerable areas. Numéro de notice : A2023-054 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2060329 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2060329 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102387
in Journal of maps > vol 18 n° 2 (February 2023) . - 33 p.[article]Comparative analysis of estimation of slope-length gradient (LS) factor for entire Afghanistan / Ahmad Ansari in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Comparative analysis of estimation of slope-length gradient (LS) factor for entire Afghanistan Type de document : Article/Communication Auteurs : Ahmad Ansari, Auteur ; Gökmen Tayfur, Auteur Année de publication : 2023 Article en page(s) : n° 2200890 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Afghanistan
[Termes IGN] bassin hydrographique
[Termes IGN] érosion
[Termes IGN] gradient de pente
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle RUSLE
[Termes IGN] système d'information géographiqueRésumé : (auteur) Slope length gradient (LS) is one of the crucial factors in the Universal Soil Loss Equations (USLE, RUSLE). This study aimed at estimating the slope-length and slope-steepness (LS) factor for the entire watersheds of Afghanistan by using three different methods, namely; (1) LS-TOOLMFD (Method 1); (2) The Method of Equations (Method 2); and (3) The approach of Moore and Burch (Method 3). The first method uses the digital elevation model (DEM) in the ASCII format, and the other two methods use the DEM in the spatial domain. The results show that the LS-factor of the study area ranges from 0.01 to 44.31, with a mean of 5.24 and standard deviation of 6.95, according to Method 1; 0.03 to 163.49, with a mean of 9.6 and standard deviation of 13.58, according to Method 2; and 0 to 3985, with a mean of 7.16 and standard deviation of 29.7, according to Method 3. The study reveals that Methods 1 and 2 are more appropriate than Method 3 because Method 3 yields high LS-factor values close to or at streamlines located near mountainous regions. The highest LS values are found to be in the northeast, north, and central regions of Afghanistan, which is consistent with the high mountains and deep valley geomorphology, indicating that these regions are particularly vulnerable to soil erosion by rainfall-runoff processes. The sediment delivery ratio (SDR) for the Upper-Helmand River Basin (Upper-HRB) is also estimated by the RUSLE, employing the LS factors produced by the three methods. The results revealed that the average annual soil loss is found to be, respectively, 9.3, 18.2, and 11.1 (ton/ha/year) by using the three methods, corresponding to SDR of 23.5%, 12.1%, and 19.9%. Numéro de notice : A2023-193 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2023.2200890 Date de publication en ligne : 18/04/2023 En ligne : https://doi.org/10.1080/19475705.2023.2200890 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103074
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - n° 2200890[article]Sediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia / Dawit Kanito in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Sediment yield estimation in GIS environment using RUSLE and SDR model in Southern Ethiopia Type de document : Article/Communication Auteurs : Dawit Kanito, Auteur ; Dawit Bedadi, Auteur ; Samuel Feyissa, Auteur Année de publication : 2023 Article en page(s) : n° 2167614 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de sensibilité
[Termes IGN] bassin hydrographique
[Termes IGN] Ethiopie
[Termes IGN] image Landsat
[Termes IGN] modèle RUSLE
[Termes IGN] précipitation
[Termes IGN] sédiment
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil erosion and sediment yields are the current limitations and future threats to agriculture, water resources and hydropower projects particularly in developing countries. Estimating the extent and comprehending the spatial distribution of hotspot area is crucial to implement evidence-based soil and water conservation (SWC) measures with limited resources. The study used RUSLE and SDR models in ArcGIS 10.8 environment. The RUSLE model was found to be highly sensitive to C factor followed by LS factor. The result indicated that the annual soil loss varies from 0 to 359.99 t ha−1 yr−1 with 22.31 t ha−1 yr−1 as a mean annual. Besides, the estimated sediment yield ranged from 0 to 42.5 t ha−1 yr−1 with a mean value of 12.02 t ha−1 yr−1. The finding revealed that the central west (SW_5) and northeast (SW_4) parts of the watershed yield higher sediment. The result also signified that about 52.9% of the eroded materials including soil and nutrients are transferred to the outlet. The outcome of our finding undoubtedly aids in the identification of hotspot areas for the adoption of appropriate SWC measures. Hence, adopting RUSLE and SDR for Gununo watershed and another watershed having similar biophysical and environmental factors is suggested. Numéro de notice : A2023-155 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2023.2167614 Date de publication en ligne : 26/01/2023 En ligne : https://doi.org/10.1080/19475705.2023.2167614 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102841
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - n° 2167614[article]Simplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area / David Marín-García in Sustainable Cities and Society, vol 88 (January 2023)
[article]
Titre : Simplified automatic prediction of the level of damage to similar buildings affected by river flood in a specific area Type de document : Article/Communication Auteurs : David Marín-García, Auteur ; Juan Rubio-Gómez-Torga, Auteur ; Manuel Duarte-Pinheiro, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104251 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] acquisition de données
[Termes IGN] Andalousie
[Termes IGN] apprentissage automatique
[Termes IGN] bassin hydrographique
[Termes IGN] bâtiment
[Termes IGN] cartographie des risques
[Termes IGN] coefficient de corrélation
[Termes IGN] dommage matériel
[Termes IGN] évaluation des paramètres
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] zone inondableRésumé : (auteur) Flooding due to overflowing rivers affects the construction elements of many buildings. Although significant progress has been made in predicting this damage, there is still a need to continue studying this issue. For this reason, the main goal of this research focuses on finding out if, based on a small dataset of cases of a given area, it is possible to predict at least three degrees of affectation in buildings, considering only three environmental factors (minimum distance from the river, unevenness and possible water communication). To meet this goal, the methodological approach followed considers scientific literature review and collection and analysis of a small dataset from 101 buildings that have been affected by floods in the Guadalquivir River basin (Andalusia. Spain). After analyzing this data, algorithms based on machine learning (ML) are applied to predict the degree of affection. The results, analysis and conclusions indicate that, if the study focuses on a specific area and similar buildings, using a correlation matrix and ML algorithms such as the "Decision Tree" with cross-validation, around 90% can be achieved in the "Recall" and "Precision" of "High-Level-Affection" class, and an “Accuracy” around 80% in general. Numéro de notice : A2023-006 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.104251 Date de publication en ligne : 15/10/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104251 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102093
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104251[article]Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying / Marzieh Shabani in Geo-spatial Information Science, vol 25 n° 4 (December 2022)
[article]
Titre : Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying Type de document : Article/Communication Auteurs : Marzieh Shabani, Auteur ; Zohreh Masoumi, Auteur ; Abolfazl Rezaei, Auteur Année de publication : 2022 Article en page(s) : pp 600 - 618 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] analyse spatiale
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] développement durable
[Termes IGN] eau souterraine
[Termes IGN] gestion de l'eau
[Termes IGN] Iran
[Termes IGN] processus de hiérarchisation analytiqueRésumé : (auteur) A precise map of the dispersion of the groundwater potential across each watershed can help decision-makers to exert optimal water management in each region. In this research, the potential of groundwater resources in both the Zanjanrood Catchment and the Tarom Region, located in the northwest of Iran, has been studied. Seven effective criteria including slope, land-use, drainage density, spring density, lithology, lineament density, and rainfall are considered. Criteria were first weighted using the Analytical Hierarchical Process (AHP) method and then overlaid by the Technique for Order Preferences by Similarity to Ideal (TOPSIS) model. Finally, the spatial zoning map of groundwater potential was obtained in four categories. A sensitivity analysis was performed to determine the influence of each criterion on the obtained map. The model was verified using both the spatial distribution of the high-discharged production wells and the geophysical-based geoelectric field surveys. The results indicate that the high-discharged wells (>40 l/s) in both regions are dispersed predominantly in the very good zone and, in several cases, in the good zone. Besides, the results from the two-dimensional models of resistivity and induced polarization of geoelectrical field survey are inappropriate agreement with those from the TOPSIS method. Notably, there is no suitable potential zone of groundwater in the surrounding highlands to be used in the future for drinking purposes since the highlands water supply is a strategic supply for drinking. The strategies employed in this study, the results of GIS modeling, and the geoelectrical analysis can be considered for sustainable development of similar arid and semi-arid areas since groundwater is considered as the main supplier of water in such regions. Numéro de notice : A2022-891 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2022.2069052 Date de publication en ligne : 10/05/2022 En ligne : https://doi.org/10.1080/10095020.2022.2069052 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102238
in Geo-spatial Information Science > vol 25 n° 4 (December 2022) . - pp 600 - 618[article]Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling / Saeid Janizadeh in Geocarto international, vol 37 n° 25 ([01/12/2022])PermalinkUpdating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia / Medria Shekar Rani in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)PermalinkAutomatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)PermalinkDevelopment of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood / Amid Darabi in Geocarto international, vol 37 n° 19 ([15/09/2022])PermalinkPrediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])PermalinkA GIS-based approach for identification of optimum runoff harvesting sites and storage estimation: a study from Subarnarekha-Kangsabati Interfluve, India / Manas Karmakar in Applied geomatics, vol 14 n° 2 (June 2022)PermalinkAssessing surface drainage conditions at the street and neighborhood scale: A computer vision and flow direction method applied to lidar data / Cheng-Chun Lee in Computers, Environment and Urban Systems, vol 93 (April 2022)PermalinkCharacterizing stream morphological features important for fish habitat using airborne laser scanning data / Spencer Dakin Kuiper in Remote sensing of environment, vol 272 (April 2022)PermalinkFlood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)PermalinkAssessment and mapping soil water erosion using RUSLE approach and GIS tools: Case of Oued el-Hai watershed, Aurès West, Northeastern of Algeria / Aida Bensekhria in ISPRS International journal of geo-information, vol 11 n° 2 (February 2022)Permalink