Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie physique) > littoral méditerranéen
littoral méditerranéenVoir aussi |
Documents disponibles dans cette catégorie (53)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Coastal land use and shoreline evolution along the Nador lagoon Coast in Morocco / Khalid El Khalidi in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Coastal land use and shoreline evolution along the Nador lagoon Coast in Morocco Type de document : Article/Communication Auteurs : Khalid El Khalidi, Auteur ; Amine Bourhili, Auteur ; Ingrida Bagdanavičiūtė, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7445 - 7461 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Corine Land Cover
[Termes IGN] érosion côtière
[Termes IGN] littoral méditerranéen
[Termes IGN] Maroc
[Termes IGN] orthoimage
[Termes IGN] photographie aérienne
[Termes IGN] surveillance du littoral
[Termes IGN] système d'information géographique
[Termes IGN] trait de côte
[Termes IGN] utilisation du solRésumé : (auteur) The coastal zone, a highly dynamic and complex environment, has important ecological and jurisdictional implications for governments and coastal managers. Based on the CORINE Land Cover classification system, this paper examined the effects of land use and land cover change (LULC) on the coastlines' dynamics along the ∼24 km barrier island of Nador lagoon on the Mediterranean coast of Morocco during a period of 62 years (1954–2016). The study utilized high-resolution orthoimages in the geographic information system (GIS) environment to characterize coastline evolution and LULC changes. The evolution of the coastline was assessed using a GIS tool, in particular the Digital Shoreline Analysis System (DSAS). The net rates of coastline change were calculated by using statistical methods: the End Point Rate (EPR) and the Linear Regression Rate (LRR). Results concerning the LULC changes showed that agricultural area and beach/dune classes decreased over the entire study period (62 years) by 11.14% and 28.45%, respectively. Urban fabric, shrub, forest, and saltmarsh/peat bog classes increased during the 62 years of evaluation by 2.69%, 19.92%, 16.77%, and 0.19%, respectively. Results regarding coastal analysis indicated that the accretion and erosion processes along the barrier island of the Nador lagoon (∼24km) were observed at 45% (10.6 km) and 55% (12.8 km) of the coastline, respectively. The beaches of Oulad Zehra and Oulad Aissa were characterized by erosion (−0.58 m/yr to −0.57 m/yr respectively), while accretion was observed on the beaches of Boukana and Kariat Arkmane at rates of +2.15 m/yr and +0.82 m/yr, respectively. This study highlighted that natural and anthropogenic processes have a strong influence on the erosion/accretion trends identified along the barrier island of Nador lagoon. The changes in LULC have affected the barrier island of the lagoon in two different forms: (1) a significant spatial conversion due to dune reforestation and (2) a fundamental spatial modification that affects the sea-lagoon connection (inlet) and the construction of new hard engineering structures. Numéro de notice : A2022-927 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2021.1974958 Date de publication en ligne : 15/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1974958 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102660
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 7445 - 7461[article]Significant loss of ecosystem services by environmental changes in the Mediterranean coastal area / Adriano Conte in Forests, vol 13 n° 5 (May 2022)
[article]
Titre : Significant loss of ecosystem services by environmental changes in the Mediterranean coastal area Type de document : Article/Communication Auteurs : Adriano Conte, Auteur ; Ilaria Zappitelli, Auteur ; Lina Fusaro, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 689 Note générale : bilbliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Ecologie
[Termes IGN] biodiversité
[Termes IGN] écosystème
[Termes IGN] forêt méditerranéenne
[Termes IGN] Leaf Area Index
[Termes IGN] littoral méditerranéen
[Termes IGN] Pinus (genre)
[Termes IGN] pollution atmosphérique
[Termes IGN] puits de carbone
[Termes IGN] Quercus suber
[Termes IGN] Rome
[Termes IGN] service écosystémiqueRésumé : (auteur) Mediterranean coastal areas are among the most threated forest ecosystems in the northern hemisphere due to concurrent biotic and abiotic stresses. These may affect plants functionality and, consequently, their capacity to provide ecosystem services. In this study, we integrated ground-level and satellite-level measurements to estimate the capacity of a 46.3 km2 Estate to sequestrate air pollutants from the atmosphere, transported to the study site from the city of Rome. By means of a multi-layer canopy model, we also evaluated forest capacity to provide regulatory ecosystem services. Due to a significant loss in forest cover, estimated by satellite data as −6.8% between 2014 and 2020, we found that the carbon sink capacity decreased by 34% during the considered period. Furthermore, pollutant deposition on tree crowns has reduced by 39%, 46% and 35% for PM, NO2 and O3, respectively. Our results highlight the importance of developing an integrated approach combining ground measurements, modelling and satellite data to link air quality and plant functionality as key elements to improve the effectiveness of estimate of ecosystem services. Numéro de notice : A2022-350 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.3390/f13050689 Date de publication en ligne : 28/04/2022 En ligne : https://doi.org/10.3390/f13050689 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100537
in Forests > vol 13 n° 5 (May 2022) . - n° 689[article]Monitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
[article]
Titre : Monitoring coastal vulnerability by using DEMs based on UAV spatial data Type de document : Article/Communication Auteurs : Antonio Minervino Amodio, Auteur ; Gianluigi Di Paola, Auteur ; Carmen Maria Rosskopf, Auteur Année de publication : 2022 Article en page(s) : n° 155 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Adriatique, mer
[Termes IGN] détection de changement
[Termes IGN] érosion côtière
[Termes IGN] géoréférencement
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] littoral méditerranéen
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotographie
[Termes IGN] point d'appui
[Termes IGN] structure-from-motion
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côte
[Termes IGN] vulnérabilitéRésumé : (auteur) The use of Unmanned Aerial Vehicles (UAVs) represents a rather innovative, quick, and low-cost methodological approach offering applications in several fields of investigation. The present study illustrates the developed method using Digital Elevation Models (DEMs) based on UAV-derived data for evaluating short-term morphological-topographic changes of the beach system and related implications for coastal vulnerability assessment. UAV surveys were performed during the summers of 2019 and 2020 along a beach stretch affected by erosion, located along the central Adriatic coast. Acquired high-resolution aerial photos were used to generate large-scale DEMs as well as orthophotos of the beach using the Structure from Motion (SfM) image processing tool. Comparison of the generated 2019 and 2020 DEMs highlighted significant morphological changes and a sediment volume loss of about 780 m3 within a surface area of about 4400 m2. Based on 20 m spaced beach profiles derived from the DEMs, a coastal vulnerability assessment was performed using the CVA approach that highlighted some significant variations in the CVA index between 2019 and 2020. Results evidence that UAV surveys provide high-resolution topographic data, suitable for specific beach monitoring activities and the updating of some parameters that enter in the CVA model contributing to its correct application. Numéro de notice : A2022-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11030155 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.3390/ijgi11030155 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99895
in ISPRS International journal of geo-information > vol 11 n° 3 (March 2022) . - n° 155[article]Planning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: combining GIS techniques and statistical analysis to identify management options / Luigi Portoghesi in Annals of forest research, vol 65 n° 1 (January - June 2022)
[article]
Titre : Planning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: combining GIS techniques and statistical analysis to identify management options Type de document : Article/Communication Auteurs : Luigi Portoghesi, Auteur ; Antonio Tomao, Auteur ; Simone Bollati, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 31 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] approche hiérarchique
[Termes IGN] carte forestière
[Termes IGN] Italie
[Termes IGN] littoral méditerranéen
[Termes IGN] peuplement pur
[Termes IGN] Pinus pinea
[Termes IGN] reboisement
[Termes IGN] résilience écologique
[Termes IGN] structure de la végétation
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du sol
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Mediterranean stone pine reforestations are common characteristics of the Italian Tyrrhenian coast, which mostly maintain uniform and monolayered stand structures. However, improving structural diversity is an effective climate change adaptation strategy in forest management. The aim of this study was to implement a methodology which allows distinct reforested areas such as a single green infrastructure to be managed according to the surrounding land use and the characteristics of the forest stands. 240 hectares of Mediterranean stone pine forests located along a 16 km strip of the Lazio coast (Central Italy) were mapped. Twelve attributes describing the pine stands and showing possible constraints for future management decisions were associated to each forest patch. A hierarchical cluster analysis was performed to group the pinewood patches according to their similarity level and five different groups were identified. For each group, different silvicultural methods were proposed to guide the compositional and structural evolution of the stands, in order to make them suitable for providing services required locally and increasing overall diversity at landscape scale. The results of the study highlight how coastal land uses can offer effective inputs to differentiate the management of forest systems and therefore achieve greater variety and resilience in the landscape over time. This approach is particularly useful in the case of very homogeneous stands such as the stone pine reforestations under study. Numéro de notice : A2022-798 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.15287/afr.2022.2176 Date de publication en ligne : 27/06/2022 En ligne : https://doi.org/10.15287/afr.2022.2176 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101958
in Annals of forest research > vol 65 n° 1 (January - June 2022) . - pp 31 - 46[article]Assessment of combining convolutional neural networks and object based image analysis to land cover classification using Sentinel 2 satellite imagery (Tenes region, Algeria) / N. Zaabar (2021)
Titre : Assessment of combining convolutional neural networks and object based image analysis to land cover classification using Sentinel 2 satellite imagery (Tenes region, Algeria) Type de document : Article/Communication Auteurs : N. Zaabar, Auteur ; Simona Niculescu, Auteur ; M.K. Mihoubi, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2021 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2-2021 Conférence : ISPRS 2021, Commission 2, XXIV ISPRS Congress, Imaging today foreseeing tomorrow 05/07/2021 09/07/2021 Nice Virtuel France OA Archives Commission 2 Importance : pp 383 - 389 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Algérie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral méditerranéen
[Termes IGN] villeRésumé : (auteur) Land cover maps can provide valuable information for various applications, such as territorial monitoring, environmental protection, urban planning and climate change prevention. In this purpose, remote sensing based on image classification approaches undergoing a high revolution can be dedicated to land cover mapping tasks. Similarly, deep learning models are considerably applied in remote sensing applications; which can automatically learn features from large amounts of data. Prevalently, the Convolutional Neural Network (CNN), have been increasingly performed in image classification. The aim of this study is to apply a new approach to analyse land cover, and extract its features. Experiments carried out on a coastal town located in north-western Algeria (Ténès region). The study area is chosen because of its importance as a part of the national strategy to combat natural hazards, specifically floods. As well as, a simple CNN model with two hidden layers was constructed, combined with an Object-Based Image Analysis (OBIA). In this regard, a Sentinel-2 image was used, to perform the classification, using spectral index combinations. Furthermore, to compare the performance of the proposed approach, an OBIA based on machines learning algorithms mainly Random Forest (RF) and Support Vector Machine (SVM), was provided. Results of accuracy assessment of classification showed good values in terms of Overall accuracy and Kappa Index, which reach to 93.1% and 0.91, respectively. As a comparison, CNN-OBIA approach outperformed OBIA based on RF algorithm. Therefore, Final land cover maps can be used as a support tool in regional and national decisions. Numéro de notice : C2021-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Communication DOI : 10.5194/isprs-archives-XLIII-B3-2021-383-2021 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-383-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98072 Contribution des SIG et de la modélisation volumique à la caractérisation géomorphologique et géologique de la région des Doukkala « Meseta côtière, Maroc » / Youness Ahmed Laaziz (2021)PermalinkOn the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band / Dimitris Poursanidis in International journal of applied Earth observation and geoinformation, vol 80 (August 2019)PermalinkFocal plant species and soil factors in Mediterranean coastal dunes: An undisclosed liaison? / Claudia Angiolini in Estuarine, Coastal and Shelf Science, vol 211 (31 October 2018)PermalinkMéthode de comparaison de nuages de points acquis par scanner laser mobile pour caractériser les éboulements des falaises côtières / Baptiste Feldmann in XYZ, n° 156 (septembre - novembre 2018)PermalinkModélisation géoprospective et simulation 3D immersive / Jean-Christophe Loubier in Revue internationale de géomatique, vol 27 n° 4 (octobre - décembre 2017)PermalinkNe plus négliger le recul des falaises méditerranéennes / Marielle Mayo in Géomètre, n° 2149 (juillet - août 2017)PermalinkDiagnostic study of a high‐precipitation event in the Western Mediterranean: adequacy of current operational networks / Samiro Khodayar in Quarterly Journal of the Royal Meteorological Society, vol 142 n° S1 (August 2016)PermalinkA multi-instrument and multi-model assessment of atmospheric moisture variability over the Western Mediterranean during HyMeX / Patrick Chazette in Quarterly Journal of the Royal Meteorological Society, vol 142 n° S1 (August 2016)PermalinkQuantitative assessment of the sensitivity to desertification in the Bradano River basin (Basilicata, southern Italy) / Filomena Canora in Journal of maps, vol 11 n° 5 ([01/10/2015])PermalinkCompilation de données radar et optiques pour la cartographie des classes d'occupation du sol aux environs du système lacustre de Bizerte (Tunisie du Nord) / Ibtissem Amri in Photo interprétation, European journal of applied remote sensing, vol 51 n° 2 (juin 2015)Permalink