Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géologie > pétrologie > roche sédimentaire
roche sédimentaireVoir aussi |
Documents disponibles dans cette catégorie (93)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data / Yanan Zhou in Remote sensing, vol 14 n° 21 (November-1 2022)
[article]
Titre : Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data Type de document : Article/Communication Auteurs : Yanan Zhou, Auteur ; Wei Wu, Auteur ; Hongbin Liu, Auteur Année de publication : 2022 Article en page(s) : n° 5571 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] composition des sols
[Termes IGN] données multitemporelles
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] limon
[Termes IGN] qualité du sol
[Termes IGN] réflectance spectrale
[Termes IGN] texture du solRésumé : (auteur) Soil texture is a key soil property driving physical, chemical, biological, and hydrological processes in soils. The rapid development of remote sensing techniques shows great potential for mapping soil properties. This study highlights the effectiveness of multitemporal remote sensing data in identifying soil textural class by using retrieved vegetation properties as proxies of soil properties. The impacts of sensors, modeling resolutions, and modeling techniques on the accuracy of soil texture classification were explored. Multitemporal Landsat-8 and Sentinel-2 images were individually acquired at the same time periods. Three satellite-based experiments with different inputs, i.e., Landsat-8 data, Sentinel-2 data (excluding red-edge parameters), and Sentinel-2 data (including red-edge parameters) were conducted. Modeling was carried out at three spatial resolutions (10, 30, 60 m) using five machine-learning (ML) methods: random forest, support vector machine, gradient-boosting decision tree, categorical boosting, and super learner that combined the four former classifiers based on the stacking concept. In addition, a novel SHapley Addictive Explanation (SHAP) technique was introduced to explain the outputs of the ML model. The results showed that the sensors, modeling resolutions, and modeling techniques significantly affected the prediction accuracy. The models using Sentinel-2 data with red-edge parameters performed consistently best. The models usually gave better results at fine (10 m) and medium (30 m) modeling resolutions than at a coarse (60 m) resolution. The super learner provided higher accuracies than other modeling techniques and gave the highest values of overall accuracy (0.8429), kappa (0.7611), precision (0.8378), recall rate (0.8393), and F1-score (0.8398) at 30 m with Sentinel-2 data involving red-edge parameters. The SHAP technique quantified the contribution of each variable for different soil textural classes, revealing the critical roles of red-edge parameters in separating loamy soils. This study provides comprehensive insights into the effective modeling of soil properties on various scales using multitemporal optical images. Numéro de notice : A2022-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14215571 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.3390/rs14215571 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102104
in Remote sensing > vol 14 n° 21 (November-1 2022) . - n° 5571[article]Efficient dike monitoring using terrestrial SFM photogrammetry / Laurent Froideval in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : Efficient dike monitoring using terrestrial SFM photogrammetry Type de document : Article/Communication Auteurs : Laurent Froideval, Auteur ; Christophe Conessa, Auteur ; Xavier Pellerin Le Bas, Auteur ; Laurent Benoit, Auteur ; Dominique Mouazé, Auteur Année de publication : 2022 Article en page(s) : pp 359 - 366 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] digue
[Termes IGN] sable
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] structure-from-motion
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) Nature based solutions are growing rapidly in order to mitigate in the near future the effects of climate change and rise of sea level on most anthropogenic coasts. In that frame, the CHERbourg bLOC (CHERLOC) project aims to study new coastal engineering solutions (overtopping, sediment transport) thanks to two new artificial units in two test sites (Normandy, France) considering biodiversity preservation but also societal acceptability. This study details an efficient method to monitor such coastal infrastructure using terrestrial Structure from Motion (SfM). In 2021, surveys were conducted to acquire pictures in April, May, June and November. A time series of 3D photogrammetric models was generated using open source SfM software. The first model was georeferenced using Ground Control Points (GCP) measured by Differential Global Navigation Satellite System (DGNSS) so that it could be used as a reference for the following point clouds using surrounding ripraps assumed to be non-mobile through the period of the study. The georeferencing Root Mean Square Error (RMSE) was found to be 1.8 cm for the April model whereas RMSEs of relative registrations of the following dates were found to be sub-centimetric. These results can be used to observe and measure blocks displacements as well as sand volumes evolution throughout the time series. The biggest displacement was found to be 23 cm between April and June. Sand topographic variation shows a continuous accumulation on selected cross-sections between April and November with an overall height accumulation of about 30 cm. Sand volumes measurements show consistent results with an added volume of 3.67 m3 on the previous areas. Numéro de notice : A2022-429 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-359-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-359-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100734
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 359 - 366[article]Using vertices of a triangular irregular network to calculate slope and aspect / Guanghui Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : Using vertices of a triangular irregular network to calculate slope and aspect Type de document : Article/Communication Auteurs : Guanghui Hu, Auteur ; Chun Wang, Auteur ; Sijin Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 382 - 404 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] bassin hydrographique
[Termes IGN] géomorphologie
[Termes IGN] grille
[Termes IGN] loess
[Termes IGN] maillage
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle numérique de surface
[Termes IGN] noeud
[Termes IGN] pente
[Termes IGN] point d'appui
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain derivative calculations from triangulated irregular network (TIN)-based digital elevation models (DEMs) have been extensively explored in geomorphometry. However, most calculation methods focus on the triangulation facets of TIN-based DEMs and ignore the vertices. In fact, these vertices are the original sampling points from the terrain surface and serve as the basis for triangulation. In this study, we argue that terrain derivative calculations using TIN-based DEMs should focus on the vertices. Employing examples with slope and aspect, we applied the TIN vertex-based method to a mathematical surface and a real topography using TIN-based DEMs with a range of sampling point densities. We performed a comparative analysis of the TIN vertex-based, TIN facet-based, and grid-based methods. Assessments on the mathematical surface showed that the TIN vertex-based method achieved the highest accuracy among the three methods. Error analysis for the real landform case indicated that the TIN vertex-based method performed slightly better than the grid-based method for slope calculation and slightly worse than the grid-based method for aspect calculation. Among the three methods, the TIN facet-based method was most sensitive to error. The TIN vertex-based method can provide a reference for the slope and aspect calculation based on point clouds. Numéro de notice : A2022-165 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1933493 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1933493 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99788
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 382 - 404[article]Mapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data / Shanshan Chen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : Mapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data Type de document : Article/Communication Auteurs : Shanshan Chen, Auteur ; Huazhong Ren, Auteur ; Rongyuan Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5464 - 5478 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] désertification
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] ensablement
[Termes IGN] image TASI
[Termes IGN] image Terra-ASTER
[Termes IGN] image thermique
[Termes IGN] sable
[Termes IGN] Sinkiang (Chine)Résumé : (auteur) On the basis of the spectral shape of thermal infrared (TIR) emissivity for sandy land, a remote sensing sand index called the sand differential emissivity index (SDEI) is proposed in this article to simply and conveniently detect sandy land over large areas. The SDEI is evaluated on ground, airborne, and spaceborne thermal emissivity data, and it shows good characterization of sandy land and performs better in sandy land identification than two previous indices. The SDEI was also evaluated in the transition zones of China’s four mega-sandy lands and was applied to long-term land surface emissivity to obtain the spatial distribution and variation in China’s sandy land from 2000 to 2016. The findings showed that a mean accuracy of 96% and a mean kappa coefficient of 0.83 were obtained in the transition zones, and the sandy land in the transition zone exhibited a decreasing trend over the past 17 years and a significant decline in the Mu Us sandy land. Meanwhile, the sandy land area in China decreased by 3.6×104 km 2 (1.53%) by the end of 2016 compared with that in early 2000. Numéro de notice : A2021-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3022772 Date de publication en ligne : 25/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022772 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97977
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5464 - 5478[article]Groundwater vulnerability assessment of the chalk aquifer in the northern part of France / Lahcen Zouhri in Geocarto international, vol 36 n° 11 ([15/06/2021])
[article]
Titre : Groundwater vulnerability assessment of the chalk aquifer in the northern part of France Type de document : Article/Communication Auteurs : Lahcen Zouhri, Auteur ; Romain Armand, Auteur Année de publication : 2021 Article en page(s) : pp 1193 - 1216 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] aquifère
[Termes IGN] ArcGIS
[Termes IGN] carte hydrogéologique
[Termes IGN] craie
[Termes IGN] eau souterraine
[Termes IGN] Hauts-de-France (région 2016)
[Termes IGN] Oise (60)
[Termes IGN] utilisation du sol
[Termes IGN] vulnérabilitéRésumé : (auteur) This study explores the groundwater vulnerability of the chalk aquifer (northern part of France) using a well-known overlay and index DRASTIC method for intrinsic scenario and using land use (LU) parameter as additional factor. Different sources have allowed to compile data necessary to map the vulnerability of the aquifer under study, which used to generate the seven parameters of DRASTIC, namely: groundwater Depth, groundwater Recharge, lithology, Soil media, Topography, Impact of the vadose zone and hydraulic Conductivity. Applying the model in ArcGIS 10.2 platform leads to identify three classes of vulnerability: low, medium and high vulnerability. The highest DRASTIC indexes appear in areas where the groundwater depth is low and in more permeable unsaturated zones. The LU has a little effect on the distribution of vulnerability classes: this distribution is marked by the low vulnerability 44% against 6.5 of high vulnerability. Numéro de notice : A2021-434 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1637465 Date de publication en ligne : 10/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1637465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97801
in Geocarto international > vol 36 n° 11 [15/06/2021] . - pp 1193 - 1216[article]A soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkAnalyse de la dynamique d’embroussaillement des pelouses calcaires par traitement d’images / Théo Mesure (2021)PermalinkDynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway / Shengbo Xie in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)PermalinkLong time-series remote sensing analysis of the periodic cycle evolution of the inlets and ebb-tidal delta of Xincun Lagoon, Hainan Island, China / Huaguo Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)PermalinkImproved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)PermalinkComparative usability of an augmented reality sandtable and 3D GIS for education / Antoni B. Moore in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)PermalinkEvolution of sand encroachment using supervised classification of Landsat data during the period 1987–2011 in a part of Laâyoune-Tarfaya basin of Morocco / Ali Aydda in Geocarto international, vol 34 n° 13 ([15/10/2019])PermalinkSensitivity of acoustic emission triggering to small pore pressure cycling perturbations during brittle creep / Kristel Chanard in Geophysical research letters, vol 46 n° 13 (16 July 2019)PermalinkEstimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest / Qingxia Zhao in Forests, vol 9 n° 10 (October 2018)PermalinkToward a systematic integration of optical remote sensing for inland waters studies / Vincent Maurice Nouchi (2018)Permalink