Descripteur
Documents disponibles dans cette catégorie (827)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]
Titre : Artificial intelligence oceanography Type de document : Monographie Auteurs : Xiaofeng Li, Éditeur scientifique ; Fan Wang, Éditeur scientifique Editeur : Springer Nature Année de publication : 2023 Importance : 346 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-981-19637-5-9 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cyclone
[Termes IGN] détection d'objet
[Termes IGN] iceberg
[Termes IGN] intelligence artificielle
[Termes IGN] océanographie
[Termes IGN] température de surface de la merRésumé : (éditeur) This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing. Note de contenu : 1- Artificial Intelligence Foundation of smart ocean
2- Forecasting tropical instability waves based on artificial intelligence
3- Sea surface height anomaly prediction based on artificial intelligence
4- Satellite data-driven internal solitary wave forecast based on machine learning techniques
5- AI-based subsurface thermohaline structure retrieval from remote sensing observations
6- Ocean heat content retrieval from remote sensing data based on machine learning
7- Detecting tropical cyclogenesis using broad learning system from satellite passive microwave observations
8- Tropical cyclone monitoring based on geostationary satellite imagery
9- Reconstruction of pCO2 data in the Southern ocean based on feedforward neural network
10- Detection and analysis of mesoscale eddies based on deep learning
11- Deep convolutional neural networks-based coastal inundation mapping from SAR imagery: with one application case for Bangladesh, a UN-defined least developed country
12- Sea ice detection from SAR images based on deep fully convolutional networks
13- Detection and analysis of marine green algae based on artificial intelligence
14- Automatic waterline extraction of large-scale tidal flats from SAR images based on deep convolutional neural networks
15- Extracting ship’s size from SAR images by deep learning
16- Benthic organism detection, quantification and seamount biology detection based on deep learningNuméro de notice : 24105 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Monographie DOI : 10.1007/978-981-19-6375-9 En ligne : https://link.springer.com/book/10.1007/978-981-19-6375-9 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103058 Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model / Zhenyang Du in Journal of Marine Systems, vol 237 (January 2023)
[article]
Titre : Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model Type de document : Article/Communication Auteurs : Zhenyang Du, Auteur ; Xuefeng Zhang, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] assimilation des données
[Termes IGN] estimation statistique
[Termes IGN] modèle océanographique
[Termes IGN] océanographie spatiale
[Termes IGN] température de surface de la mer
[Termes IGN] teneur en chaleur de l'océanRésumé : (auteur) Using observational information to tune uncertain physical parameters in an ocean model via a robust data assimilation method has great potential to reduce model bias and improve the quality of sea temperature analysis and prediction. However, how observational information should be used to optimize geographic-dependent parameters through four-dimensional variational (4DVAR) data assimilation, which is one of the most prevailing assimilation methods, has not been fully studied. In this study, a two-step 4DVAR method is proposed to enhance parameter correction when the assimilation model contains biased geographic-dependent parameters within a biased model framework. Here, the biased parameters are set to an oceanic eddy diffusion coefficient, Kv, that plays an important role in modulating synoptic, seasonal and long-term changes in ocean heat content. Within a twin assimilation experiment framework, the temperature “observations” generated from sampling a “truth” model are assimilated into a biased model to investigate to what extent Kv can be estimated using the 4DVAR method when Kv remains geographic-dependent. The results show that the geographic-dependent Kv distribution can be optimally estimated to further improve the sea temperature analysis performance compared with the state estimation only method. In addition, the model prediction performance is also discussed with optimally estimated parameters under various conditions of noisy and/or sparse ocean observations. These results provide some insights for the prediction of ocean temperature mixing and stratification in a 3D primitive ocean numerical model using 4DVAR data assimilation. Numéro de notice : A2023-080 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jmarsys.2022.103824 En ligne : https://doi.org/10.1016/j.jmarsys.2022.103824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102716
in Journal of Marine Systems > vol 237 (January 2023)[article]Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami Type de document : Article/Communication Auteurs : Riantini Virtriana, Auteur ; Agung Budi Harto, Auteur ; Fiza Wira Atmaja, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 28 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] base de données d'images
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dommage matériel
[Termes IGN] données Copernicus
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] Indonésie
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] tsunamiRésumé : (auteur) In Indonesia, tsunamis are frequent events. In 2000–2016, there were 44 tsunami events in Indonesia, with financial losses reaching 43.38 trillion. In 2018, a tsunami occurred in the Sunda Strait due to the eruption of the Anak Krakatau Volcano, which caused many fatalities and much building damage. This study aimed to detect the building damage in the Labuan District, Banten Province. Machine learning methods were used to detect building damage using random forest with object-based techniques. No previous research has combined selected predictors into scenarios; hence, the novelty of this study is combining various random forest predictors to identify the extent of building damage using 14 predictor scenarios. In addition, field surveys were conducted two years and nine months after the tsunami to observe the changes and efforts made. The results of the random forest classification were validated and compared with three datasets, namely xBD, Copernicus, and field survey data. The results of this study can help classify the level of building damage using satellite imagery to improve mitigation in tsunami-prone areas. Numéro de notice : A2023-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475705.2022.2147455 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1080/19475705.2022.2147455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102307
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 28 - 51[article]Modeling the gravitational effects of ocean tide loading at coastal stations in the China earthquake gravity network based on GOTL software / Chuandong Zhu in Journal of applied geodesy, vol 17 n° 1 (January 2023)
[article]
Titre : Modeling the gravitational effects of ocean tide loading at coastal stations in the China earthquake gravity network based on GOTL software Type de document : Article/Communication Auteurs : Chuandong Zhu, Auteur ; Liuqing Pang, Auteur ; Didi Sheng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 15 - 27 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur local
[Termes IGN] Chine
[Termes IGN] fonction de Green
[Termes IGN] littoral
[Termes IGN] marée océanique
[Termes IGN] modèle de géopotentiel
[Termes IGN] modèle numérique de surface
[Termes IGN] surcharge océaniqueRésumé : (auteur) The gravitational effects of ocean tide loading, which are one of the main factors affecting gravity measurements, consist of three components: (1) direct attraction from the tidal water masses, (2) radial displacement of the observing station due to the tidal load, and (3) internal redistribution of masses due to crustal deformation. In this study, software for gravitational effects of ocean tide loading was developed by evaluating a convolution integral between the ocean tide model and Green’s functions that describe the response of the Earth to tide loading. The effects of three-dimensional station coordinates, computational grid patterns, ocean tide models, Green’s functions, coastline, and local tide gauge were comprehensively considered in the programming process. Using a larger number of high-precision coastlines, ocean tide models, and Green’s functions, the reliability and applicability of the software were analyzed at coastal stations in the China Earthquake Gravity Network. The software can provide the amplitude and phase for ocean tide loading and produce a predicted gravity time series. The results can effectively reveal the variation characteristics of ocean tide loading in space and time. The computational gravitational effects of ocean tide loading were compared and analyzed for different ocean tide models and Green’s functions. The results show that different ocean tide models and Green’s functions have certain effects on the calculated values of loading gravity effects. Furthermore, a higher-precision local ocean tide model, digital elevation model, and local tidal gauge record can be further imported into our software to improve the accuracy of loading gravity effects in the global and local zones. The software is easy to operate and can provide a comprehensive platform for correcting the gravitational effects of ocean tide loading at stations in the China Earthquake Gravity Network. Numéro de notice : A2023-112 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2022-0023 Date de publication en ligne : 03/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102471
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 15 - 27[article]Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)PermalinkVertical deformation and residual altimeter systematic errors around continental Australia inferred from a Kalman-based approach / Mohammad-Hadi Rezvani in Journal of geodesy, vol 96 n° 12 (December 2022)PermalinkIntegrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability / Benjamin T. Gutierrez in Earth and space science, vol 9 n° 11 (November 2022)PermalinkTidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran / Kourosh Shahryari Nia in Marine geodesy, vol 45 n° 6 (November 2022)PermalinkUse of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand / Kiatkulchai Jitt-Aer in Natural Hazards, vol 113 n° 1 (August 2022)PermalinkLittoraux sous double surveillance / Laurent Polidori in Géomètre, n° 2204 (juillet-août 2022)PermalinkHow can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)PermalinkModeling gravimetric signatures of third-degree ocean tides and their detection in superconducting gravimeter records / Roman Sulzbach in Journal of geodesy, vol 96 n° 5 (May 2022)PermalinkLa bathymétrie ancienne au service de l’étude de tsunamis inexpliqués : le cas du pertuis d’Antioche (1785, 1875, 1882) / Helen Mair Rawsthorne in Norois, n° 263 (avril - juin 2022)PermalinkCoastal observation of sea surface tide and wave height using opportunity signal from Beidou GEO satellites: analysis and evaluation / Feng Wang in Journal of geodesy, vol 96 n° 4 (April 2022)Permalink