Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > reconstruction 3D > reconstruction d'objet > reconstruction 3D du bâti
reconstruction 3D du bâtiSynonyme(s)reconstruction du batiVoir aussi |
Documents disponibles dans cette catégorie (281)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Titre : AI4GEO: LOD0 Generation for 3D building models Type de document : Article/Communication Auteurs : Pierre Lassalle, Auteur ; Bruno Vallet , Auteur ; Etienne Le Bihan, Auteur ; Pierre-Marie Brunet, Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2023 Projets : AI4GEO / Conférence : JURSE 2023, Joint Urban Remote Sensing Event 17/05/2023 19/05/2023 Heraklion Grèce Proceedings IEEE Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] image satellite
[Termes IGN] niveau de détail
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] zone urbaineRésumé : (Auteur) Recent studies on Earth observation are improved by the proliferation of imaging sensors able to capture large datasets with a high spatial resolution. As a result, many approaches have been proposed for 3D modeling, remote sensing (RS), image processing and mapping. In this scope, three-dimensional (3D) mapping of urban areas has a great potential to provide the user with a precise scene understanding. The AI4GEO project aims at developing an automatic solution for producing 3D geospatial information with new added-value services. This paper will first introduce the AI4GEO initiative, context and overall objectives. It will then present the current status regarding 3D reconstruction of urban areas, in particular LOD0 building shape generation using satellite data. Numéro de notice : C2023-010 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/JURSE57346.2023.10144155 Date de publication en ligne : 08/06/2023 En ligne : https://doi.org/10.1109/JURSE57346.2023.10144155 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103311 Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds / Li Li in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)
[article]
Titre : Point2Roof: End-to-end 3D building roof modeling from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Li Li, Auteur ; Nan Song, Auteur ; Fei Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 17 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation 3D
[Termes IGN] Perceptron multicouche
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (auteur) Three-dimensional (3D) building roof reconstruction from airborne LiDAR point clouds is an important task in photogrammetry and computer vision. To automatically reconstruct the 3D building models at Level of Detail 2 (LoD-2) from airborne LiDAR point clouds, the data-driven approaches usually need to be performed in two steps: geometric primitive extraction and roof structure inference. Obviously, the traditional approaches are not end-to-end, the accumulated errors in different stages cannot be avoided and the final 3D roof models may not be optimal. In addition, the results of 3D roof models largely depend on the accuracy of geometric primitives (planes, lines, etc.). To solve these problems, we present a deep learning-based approach to directly reconstruct building roofs from airborne LiDAR point clouds, named Point2Roof. In our method, we start by extracting the deep features for each input point using PointNet++. Then, we identify a set of candidate corner points from the input point clouds using the extracted deep features. In addition, we also regress the offset for each candidate corner point to refine their locations. After that, these candidates are clustered into a set of initial vertices, and we further refine their locations to obtain the final accurate vertices. Finally, we propose a Paired Point Attention (PPA) module to predict the true model edges from an exhaustive set of candidate edges between the vertices. Unlike traditional roof modeling approaches, the proposed Point2Roof is end-to-end. However, due to the lack of a building reconstruction dataset, we construct a large-scale synthetic dataset to verify the effectiveness and robustness of the proposed Point2Roof. The experimental results conducted on the synthetic benchmark demonstrate that the proposed Point2Roof significantly outperforms the traditional roof modeling approaches. The experiments also show that the network trained on the synthetic dataset can be applied to the real point clouds after fine-tuning the trained model on a small real dataset. The large-scale synthetic dataset, the small real dataset and the source code of our approach are publicly available in https://github.com/Li-Li-Whu/Point2Roof. Numéro de notice : A2022-745 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.08.027 Date de publication en ligne : 10/09/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.08.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101728
in ISPRS Journal of photogrammetry and remote sensing > vol 193 (November 2022) . - pp 17 - 28[article]3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
[article]
Titre : 3D building reconstruction from single street view images using deep learning Type de document : Article/Communication Auteurs : Hui En Pang, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : n° 102859 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] empreinte
[Termes IGN] Helsinki
[Termes IGN] image Streetview
[Termes IGN] maillage
[Termes IGN] morphologie urbaine
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) 3D building models are an established instance of geospatial information in the built environment, but their acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in practice, often only few street-level images provide an unobstructed view of a building. We develop the reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; (2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D urban form from SVI without requiring any existing building information. Obtaining 3D building models in regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time. Numéro de notice : A2022-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102859 Date de publication en ligne : 17/06/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102859 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101160
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102859[article]Évaluation de la qualité de modèles 3D issus de nuages de points / Tania Landes in XYZ, n° 171 (juin 2022)
[article]
Titre : Évaluation de la qualité de modèles 3D issus de nuages de points Type de document : Article/Communication Auteurs : Tania Landes, Auteur Année de publication : 2022 Article en page(s) : pp 14 - 24 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] maquette numérique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] qualité du modèle
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (Auteur) La modélisation 3D répond à la fois à un enjeu économique, mais aussi environnemental, que ce soit à l’échelle du bâtiment ou de la ville. Ces dix dernières années, les techniques d’acquisition ont considérablement évolué du point de vue de leur rapidité, du volume de données à gérer, de l’hétérogénéité des informations acquises par les systèmes multicapteurs, de même que des méthodes de traitement des données. De nouveaux processus sont nés de ces bouleversements, comme le processus “scan-to-BIM”, caractérisant les étapes menant du nuage de points à une maquette numérique intelligente. En adoptant la maquette numérique, intégrée dans un processus collaboratif BIM (Building Information Modeling), les acteurs du bâtiment sont en mesure d’effectuer des simulations et de réduire, en plus des coûts, l’impact environnemental lié aux interventions sur le bâtiment, tout au long de son cycle de vie. En pratique, pour aboutir à une maquette numérique intelligente du bâtiment à partir d’un relevé de l’existant, de nombreux verrous technologiques sont à lever. Dans ce contexte, j’ai eu l’occasion d’encadrer divers travaux de recherches portant sur les thématiques allant de l’acquisition de données 3D (généralement sous forme de nuages de points 3D) à leur traitement, jusqu’à la production de la maquette numérique comme résumé dans le numéro 167 de la revue XYZ [Landes, 2021]. Dans la continuité de ce résumé, et comme l’annonçait la conclusion de ce dernier, cette suite se concentre sur la question de la qualité des livrables 3D détaillés dans [Landes, 2020]. Numéro de notice : A2022-521 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101066
in XYZ > n° 171 (juin 2022) . - pp 14 - 24[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2022021 RAB Revue Centre de documentation En réserve L003 Disponible City3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)PermalinkAutomated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands / Ravi Peters in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)PermalinkÉvaluation des apports de l’apprentissage profond au sein d’un service dédié à la numérisation du patrimoine / Maxime Mérizette in XYZ, n° 170 (mars 2022)PermalinkPermalinkPermalinkAutomatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)PermalinkVGI3D: an interactive and low-cost solution for 3D building modelling from street-level VGI images / Chaoquan Zhang in Journal of Geovisualization and Spatial Analysis, vol 5 n° 2 (December 2021)PermalinkLayout graph model for semantic façade reconstruction using laser point clouds / Hongchao Fan in Geo-spatial Information Science, vol 24 n° 3 (July 2021)PermalinkCompressive Sensing appliqué au traitement de données InSAR pour le suivi de la déformation des zones urbaines / Matthieu Rebmeister in XYZ, n° 166 (mars 2021)PermalinkCurved buildings reconstruction from airborne LiDAR data by matching and deforming geometric primitives / Jingwei Song in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)Permalink