Descripteur
Documents disponibles dans cette catégorie (1080)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based model for automated land suitability assessment for main crops in north-western desert of Egypt (case study: south of Al-Dabaa Corridor) / Adel Shalaby in Applied geomatics, vol 15 n° 1 (March 2023)
[article]
Titre : A GIS-based model for automated land suitability assessment for main crops in north-western desert of Egypt (case study: south of Al-Dabaa Corridor) Type de document : Article/Communication Auteurs : Adel Shalaby, Auteur ; Hossam Khedr, Auteur ; Ehab Youssef, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 15 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cultures
[Termes IGN] désert
[Termes IGN] Egypte
[Termes IGN] production agricole
[Termes IGN] système d'information géographique
[Termes IGN] utilisation du solRésumé : (auteur) The ever-increasing population causes huge pressure on the areas already inhabited and causes a decrease in an area per capita. This fact necessitates an essential demand for evaluating and classifying the soil according to its agricultural productivity for different crops. This research aimed to evaluate lands which proposed to use in the agricultural field in the south of Al-Dabaa Corridor based on remote sensed data and GIS techniques. Moreover, the future optimum agricultural use planning will be projected based on the land assessments in the study area. Land suitability was evaluated using ALES-arid software for six crops. It was found that 74% of the study area was suitable for one fruit crop, date palm, and about 77.3% for one crop, alfalfa, and also suitable for one vegetable crop, tomato, by 77.1%. Furthermore, it was found that the study area was moderately suitable for other two crops, faba bean and maize (72.7 and 67.8%), and one fruit crop, citrus (70.1%). On the other hand, it was found that the characteristics that most affected the suitability class of fruit crops were soil salinity, soil depth, ESP, slope, and coarse texture. Finally, the study area should go under major reclamation process (removal of the excess salts and improvement of the drainage conditions) in order to obtain the highest production. Numéro de notice : A2023-217 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s12518-022-00474-8 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1007/s12518-022-00474-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103149
in Applied geomatics > vol 15 n° 1 (March 2023) . - pp 15 - 28[article]The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)
[article]
Titre : Remote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia Type de document : Article/Communication Auteurs : Lifan Ji, Auteur ; Yihao Shao, Auteur ; Jianjun Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] Egypte
[Termes IGN] gestion de l'eau
[Termes IGN] humidité du sol
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] stress hydrique
[Termes IGN] Tunisie
[Termes IGN] zone semi-arideRésumé : (auteur) This study focused on monitoring the water status of vegetation and soil by exploiting the synergy of optical and microwave satellite data with the aim of improving the knowledge of water cycle in cultivated lands in Egyptian Delta and Tunisian areas. Environmental analysis approaches based on optical and synthetic aperture radar data were carried out to set up the basis for future implementation of practical and cost-effective methods for sustainable water use in agriculture. Long-term behaviors of vegetation indices were thus analyzed between 2000 and 2018. By using SAR data from Sentinel-1, an Artificial Neural Network-based algorithm was implemented for estimating soil moisture and monthly maps for 2018 have been generated to be compared with information derived from optical indices. Moreover, a novel drought severity index was developed and applied to available data. The index was obtained by combining vegetation soil difference index, derived from optical data, and soil moisture content derived from SAR data. The proposed index was found capable of complementing optical and microwave sensitivity to drought-related parameters, although ground data are missing for correctly validating the results, by capturing drought patterns and their temporal evolution better than indices based only on microwave or optical data. Numéro de notice : A2023-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2157335 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2157335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102430
in European journal of remote sensing > vol 56 n° 1 (2023) . - pp 1 - 16[article]Tree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data / Ying Quan in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Tree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data Type de document : Article/Communication Auteurs : Ying Quan, Auteur ; Mingze Li, Auteur ; Yuanshuo Hao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2171706 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] espèce végétale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt secondaire
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) Recent growth in unmanned aerial vehicle (UAV) technology have promoted the detailed mapping of individual tree species. However, the in-depth mining and comprehending of the significance of features derived from high-resolution UAV data for tree species discrimination remains a difficult task. In this study, a state-of-the-art approach combining UAV-borne light detection and ranging (LiDAR) and hyperspectral was used to classify 11 common tree species in a typical natural secondary forest in Northeast China. First, comprehensive relevant structural and spectral features were extracted. Then, the most valuable feature sets were selected by using a hybrid approach combining correlation-based feature selection with the optimized recursive feature elimination algorithm. The random forest algorithm was used to assess feature importance and perform the classification. Finally, the robustness of features derived from point clouds with different structures and hyperspectral images with different spatial resolutions was tested. Our results showed that the best classification accuracy was obtained by combining LiDAR and hyperspectral data (75.7%) compared to that based on LiDAR (60.0%) and hyperspectral (64.8%) data alone. The mean intensity of single returns and the visible atmospherically resistant index for red-edge band were the most influential LiDAR and hyperspectral derived features, respectively. The selected features were robust in point clouds with a density not lower than 5% (~5 pts/m2) and a resolution not lower than 0.3 m in hyperspectral data. Although canopy surface features were slightly different from original LiDAR features, canopy surface information was also important for tree species classification. This study proved the capabilities of UAV-borne LiDAR and hyperspectral data in natural secondary forest tree species discrimination and the potential for this approach to be transferable to other study areas. Numéro de notice : A2023-194 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/15481603.2023.2171706 Date de publication en ligne : 03/02/2023 En ligne : https://doi.org/10.1080/15481603.2023.2171706 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103075
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2171706[article]Urban infrastructure expansion and artificial light pollution degrade coastal ecosystems, increasing natural-to-urban structural connectivity / Moisés A. Aguilera in Landscape and Urban Planning, vol 229 (January 2023)
[article]
Titre : Urban infrastructure expansion and artificial light pollution degrade coastal ecosystems, increasing natural-to-urban structural connectivity Type de document : Article/Communication Auteurs : Moisés A. Aguilera, Auteur ; Maria Gracia González, Auteur Année de publication : 2023 Article en page(s) : n° 104609 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] ArcGIS
[Termes IGN] Chili
[Termes IGN] croissance urbaine
[Termes IGN] dégradation de l'environnement
[Termes IGN] écosystème
[Termes IGN] étalement urbain
[Termes IGN] habitat (nature)
[Termes IGN] intensité lumineuse
[Termes IGN] littoral
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] paysage urbain
[Termes IGN] pollution lumineuse
[Termes IGN] urbanismeRésumé : (auteur) Urbanization is provoking habitat loss and fragmentation, driving rapid landscape transformation worldwide. Remnant habitats in urban areas can be especially prone to degradation by human activities at short time scales, and poor planning during urban expansion can erode their structural and functional connectivity. Foredunes in particular are threatened significantly by human activities, including coastal urban infrastructure expansion, by bulldozing them and/or by interrupting their continuity across the shoreline, and also by associated light pollution. However, there is still scarce quantification about how urban processes determine changes in remnant habitat extent and modify the configuration of structural connectivity in coastal urban settings. Using an expanding conurbation located in north-central Chile (∼29°S) as model system, we investigated the rate of coastal foredune loss and spatial fragmentation due to urban expansion, and the change in the type of structural connectivity, i.e. with other natural habitats vs with urban infrastructure. Based on map analyses of structural connectivity among habitats and with urban infrastructure through time, we estimated foredune habitat extent and fragmentation and their shared border with other habitats and built infrastructure during two time intervals, 2010–2015 and 2015–2020. Distribution and intensity of light pollution on present foredunes were also quantified in situ through field sampling. We found 36 % decline in foredune area and increase in their connection with urban infrastructure. Urban wetlands and parallel dunes also experienced persistent area loss and increase in connection with urban infrastructure. Light pollution was intense in the foredune-beach ecotone. Given the rapid erosion of functional and structural connectivity of natural habitats, it becomes imperious to halt the reduction of remnant habitats and ecotones, and improve natural corridors in urban settings. Numéro de notice : A2023-127 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.landurbplan.2022.104609 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104609 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102507
in Landscape and Urban Planning > vol 229 (January 2023) . - n° 104609[article]Consistency assessment of multi-date PlanetScope imagery for seagrass percent cover mapping in different seagrass meadows / Pramaditya Wicaksono in Geocarto international, vol 37 n° 27 ([20/12/2022])PermalinkClimate change-induced background tree mortality is exacerbated towards the warm limits of the species ranges / Adrien Taccoen in Annals of Forest Science, vol 79 n° 1 (2022)PermalinkComparison of methods for the automatic classification of forest habitat types in the Southern Alps : Application to ecological data from the French national forest inventory / Charlotte Labit in Biodiversity & Conservation, vol 31 n° 13-14 (December 2022)PermalinkA deep learning framework based on generative adversarial networks and vision transformer for complex wetland classification using limited training samples / Ali Jamali in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)PermalinkDiscriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])PermalinkFusion of SAR and multi-spectral time series for determination of water table depth and lake area in peatlands / Katrin Krzepek in PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, vol 90 n° 6 (December 2022)PermalinkUrban wetland fragmentation and ecosystem service assessment using integrated machine learning algorithm and spatial landscape analysis / Das Subhasis in Geocarto international, vol 37 n° 25 ([01/12/2022])PermalinkBeyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)PermalinkA fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation / Xiaoguo Guan in Survey review, vol 54 n° 387 (November 2022)PermalinkDeep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)Permalink