Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > signal aléatoire > bruit (théorie du signal)
bruit (théorie du signal)Voir aussi |
Documents disponibles dans cette catégorie (189)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Poststack seismic data denoising based on 3-D convolutional neural network / Dawei Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Poststack seismic data denoising based on 3-D convolutional neural network Type de document : Article/Communication Auteurs : Dawei Liu, Auteur ; Dawei Liu, Auteur ; Xiaokai Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1598 - 1629 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] bruit blanc
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] post-stratification de données
[Termes IGN] séisme
[Termes IGN] sismologieRésumé : (Auteur) Deep learning has been successfully applied to image denoising. In this study, we take one step forward by using deep learning to suppress random noise in poststack seismic data from the aspects of network architecture and training samples. On the one hand, poststack seismic data denoising mainly aims at 3-D seismic data. We designed an end-to-end 3-D denoising convolutional neural network (3-D-DnCNN) that takes raw 3-D cubes as input in order to better extract the features of the 3-D spatial structure of poststack seismic data. On the other hand, denoising images with deep learning require noisy–clean sample pairs for training. In the field of seismic data processing, researchers usually try their best to suppress noise by using complex processes that combine different methods, but clean labels of seismic data are not available. In addition, building training samples in field seismic data has become an interesting but challenging problem. Therefore, we propose a training sample selection method that contains a complex workflow to produce comparatively ideal training samples. Experiments in this study demonstrate that deep learning can directly learn the ability to denoise field seismic data from selected samples. Although the building of the training samples may occur through a complex process, the experimental results of synthetic seismic data and field seismic data show that the 3-D-DnCNN has learned the ability to suppress the Gaussian noise and super-Gaussian noise from different training samples. Moreover, the 3-D-DnCNN network has better denoising performance toward arc-like imaging noise. In addition, we adopt residual learning and batch normalization in order to accelerate the training speed. After network training is satisfactorily completed, its processing efficiency can be significantly higher than that of conventional denoising methods. Numéro de notice : A2020-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947149 Date de publication en ligne : 06/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947149 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94661
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1598 - 1629[article]Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering / Liyuan Ma in European journal of remote sensing, vol 53 n° 1 (2020)
[article]
Titre : Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering Type de document : Article/Communication Auteurs : Liyuan Ma, Auteur ; Jia Zhenhong, Auteur ; Jie Yang, Auteur ; Nikola Kasabov, Auteur Année de publication : 2020 Article en page(s) : pp 1 -13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] coefficient de corrélation
[Termes IGN] détection de changement
[Termes IGN] distance euclidienne
[Termes IGN] image multibande
[Termes IGN] itération
[Termes IGN] masque
[Termes IGN] pondérationRésumé : (auteur) In the present study, an improved iteratively reweighted multivariate alteration detection (IR-MAD) algorithm was proposed to improve the contribution of weakly correlated bands in multi-spectral image change detection. In the proposed algorithm, each image band was given a different weight through single-band iterative weighting, improving the correlation between each pair of bands. This method was used to obtain the characteristic difference in the diagrams of the band that contain more variation information. After removing Gaussian noise from each feature-difference graph, the difference graphs of each band were fused into a change-intensity graph using the Euclidean distance formula. Finally, unsupervised fuzzy C-means (FCM) clustering was used to perform binary clustering on the fused difference graphs to obtain the change detection results. By comparing the original multivariate alteration detection (MAD) algorithm, the IR-MAD algorithm and the proposed IR-MAD algorithm, which used a mask to eliminate strong changes, the experimental results revealed that the multi-spectral change detection results of the proposed algorithm are closer to the actual value and had higher detection accuracy than the other algorithms. Numéro de notice : A2020-164 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2019.1707124 Date de publication en ligne : 26/12/2020 En ligne : https://doi.org/10.1080/22797254.2019.1707124 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94831
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 1 -13[article]Contextual filtering methods based on the subbands and subspaces decomposition of complex SAR interferograms / Saoussen Belhadj-Aissa in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol 12 n° 12 (December 2019)
[article]
Titre : Contextual filtering methods based on the subbands and subspaces decomposition of complex SAR interferograms Type de document : Article/Communication Auteurs : Saoussen Belhadj-Aissa, Auteur ; Faiza Hocine, Auteur ; Bénédicte Fruneau , Auteur ; Mohamed Salah Boughacha, Auteur ; Karima Hadj-Rabah, Auteur ; Aichouche Belhadj-Aissa, Auteur Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 5321 - 5333 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit (théorie du signal)
[Termes IGN] décomposition d'image
[Termes IGN] filtrage numérique d'image
[Termes IGN] image radar moirée
[Termes IGN] prise en compte du contexteRésumé : (Auteur) Different forms of phase noise in SAR interferograms hamper the accuracy and reliability of interferometric results (InSAR and DInSAR) for the reconstruction of altimetric information and its variations. Geometric and temporal decorrelations, changes in the properties of observed surfaces and delays introduced by the atmospheric layers are the main sources of interferometric noise. In order to reduce their effects and thus increase the robustness of the phase unwrapping algorithms, filtering methods are applied at different levels of the InSAR and DInSAR processes. In this article, we propose an interferometric filtering process that combines wavelet decomposition into subbands and nonlinear weighting filter called spectral contextual filter (SCF). SCF is based on the Goldstein algorithm, whose nonlinear filter coefficients are calculated, for each element of window according to the filter's punctual parameter. This parameter is determined by estimating the adaptive coherent pseudocorrelation of overlapping blocks of the interferometric phase which combines coherence and pseudocorrelation that are both weighted by the coefficient of variation of each block. In order to show the efficiency and robustness of this process, we compared it with the subspaces decomposition filtering process that we implemented. An assessment scheme was led on the basis of a compromise between residues reduction and fringe boundaries conservation. This assessment was carried relative to the global and local parameters. The tests were conducted on complex interferograms acquired on regions with high topographical variations. Numéro de notice : A2019-273 Affiliation des auteurs : UPEM-LASTIG+Ext (2016-2019) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/JSTARS.2019.2957466 Date de publication en ligne : 23/12/2019 En ligne : https://doi.org/10.1109/JSTARS.2019.2957466 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95356
in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing > vol 12 n° 12 (December 2019) . - pp 5321 - 5333[article]Modelling of the timeseries of GNSS coordinates and their interaction with average magnitude earthquakes / Sanja Tucikesic in Geodetski vestnik, Vol 63 n° 4 (December 2019)
[article]
Titre : Modelling of the timeseries of GNSS coordinates and their interaction with average magnitude earthquakes Type de document : Article/Communication Auteurs : Sanja Tucikesic, Auteur ; Dragan Blagojevic, Auteur Année de publication : 2019 Article en page(s) : pp 525 - 540 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse spectrale
[Termes IGN] Bosnie-Herzégovine
[Termes IGN] bruit (théorie du signal)
[Termes IGN] bruit blanc
[Termes IGN] compensation par moindres carrés
[Termes IGN] coordonnées GNSS
[Termes IGN] déformation de la croute terrestre
[Termes IGN] modèle stochastique
[Termes IGN] séisme
[Termes IGN] Serbie
[Termes IGN] série temporelle
[Termes IGN] station GNSS
[Termes IGN] variation temporelleRésumé : (auteur) In this article the time series data of GNSS station coordinates are analysed, using least-squares spectral analysis (LSSA). One type of LSSA, the method of estimating a frequency spectrum, is the Lomb–Scargle method. Because of the presence of discontinuities in GNSS measurements, we applied Lomb–Scargle model for detecting and characterizing periodicity. We analyzed time series data from the station SRJV (Sarajevo), for a period of about 20 years, and BEOG (Belgrade), for a period of about 5 years. The spectral analysis is used to determine quickly the predominant noise in the position time series. Analyzed spectral indices of noise (α) of GNSS coordinate time series of SRJV and BEOG are in the range of -1 Numéro de notice : A2019-579 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.15292/geodetski-vestnik.2019.04.525-540 Date de publication en ligne : 24/05/2019 En ligne : https://doi.org/10.15292/geodetski-vestnik.2019.04.525-540 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94467
in Geodetski vestnik > Vol 63 n° 4 (December 2019) . - pp 525 - 540[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2019041 RAB Revue Centre de documentation En réserve L003 Disponible An analytic expression for the phase noise of the goldstein–werner filter / Scott Hensley in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
[article]
Titre : An analytic expression for the phase noise of the goldstein–werner filter Type de document : Article/Communication Auteurs : Scott Hensley, Auteur Année de publication : 2019 Article en page(s) : pp 6499 - 6516 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit thermique
[Termes IGN] corrélation temporelle
[Termes IGN] densité spectrale de puissance
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Goldstein
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] phase
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] rapport signal sur bruit
[Termes IGN] transformation de FourierRésumé : (auteur) Interferogram filtering for noise reduction is a key to many radar interferometric applications. Repeat pass radar interferometry often uses data with less than ideal correlation levels resulting from either long spatial or temporal baselines or changes between observations leading to high levels of temporal correlation. To maximize the utility of such pairs filtering the interferogram to get maximal noise reduction is often needed. One technique that has proved quite useful in the geophysical community is power spectral or Goldstein–Werner filtering of the interferogram whereby a power-weighted version of the Fourier transform is used to enhance fringe visibility. Although this paper defining the filter briefly touched upon the spatial resolution and noise reduction induced by the filter, it did not provide a useful formula for predicting the phase noise after filtering. This paper derives a formula for the phase noise obtained from power spectral filtering albeit under the restriction of several simplifying assumptions to make the problem analytically tractable. In particular, it is assumed that the interferometric phase is locally well approximated by a linear phase ramp with nonlinear phase perturbations small in a spectral energy sense compared to the linear term. Numéro de notice : A2019-343 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2906549 Date de publication en ligne : 25/04/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2906549 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93378
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6499 - 6516[article]Decomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach / Feng Ming in Advances in space research, vol 64 n°5 (1 September 2019)PermalinkInvestigation of the noise properties at low frequencies in long GNSS time series / Xiaoxing He in Journal of geodesy, vol 93 n° 9 (September 2019)PermalinkOn the application of Monte Carlo singular spectrum analysis to GPS position time series / Seyed Mohsen Khazraei in Journal of geodesy, vol 93 n° 9 (September 2019)PermalinkInfluence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning / Feng Zhou in GPS solutions, vol 23 n° 3 (July 2019)PermalinkAssessment of along-normal uncertainties for application to terrestrial laser scanning surveys of engineering structures / Tarvo Mill in Survey review, vol 51 n° 364 (January 2019)PermalinkPermalinkRTK and PPP-RTK using smartphones: From short-baseline to long-baseline applications / Francesco Darugna (2019)PermalinkSignaux et systèmes / André Quinquis (2019)PermalinkBruit de scintillation dans les séries temporelles de positions GNSS : origines et conséquences / Paul Rebischung (2018)PermalinkPermalinkCharacterizing noise in daily GPS position time series with overlapping Hadamard variance and maximum likelihood estimation / Chang Xu in Survey review, vol 49 n° 355 (October 2017)PermalinkInitial assessment of the COMPASS/BeiDou-3 : new-generation navigation signals / Xiaohong Zhang in Journal of geodesy, vol 91 n° 10 (October 2017)PermalinkDenoising of natural images through robust wavelet thresholding and genetic programming / Asem Khmag in The Visual Computer, vol 33 n°9 (September 2017)PermalinkParallax-tolerant aerial image georegistration and efficient camera pose refinement—without piecewise homographies / Hadi AliAkbarpour in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)PermalinkGPS coordinate time series measurements in Ontario and Quebec, Canada / Hadis Samadi Alinia in Journal of geodesy, vol 91 n° 6 (June 2017)PermalinkMultivariate analysis of GPS position time series of JPL second reprocessing campaign / Ali Reza Amiri-Simkooei in Journal of geodesy, vol 91 n° 6 (June 2017)PermalinkAnalytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data / André Dittrich in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)PermalinkModified residual method for the estimation of noise in hyperspectral images / Asad Mahmood in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)PermalinkStudy of the effects on GPS coordinate time series caused by higher-order ionospheric corrections calculated using the DIPOLE model / Liansheng Deng in Geodesy and Geodynamics, vol 8 n° 2 (March 2017)PermalinkDetermination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data / Benedikt Soja in Journal of geodesy, vol 90 n° 12 (December 2016)Permalink