Descripteur
Documents disponibles dans cette catégorie (55)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A hierarchical multiview registration framework of TLS point clouds based on loop constraint / Hao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : A hierarchical multiview registration framework of TLS point clouds based on loop constraint Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Li Yan, Auteur ; Hong Xie, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 65 - 76 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] appariement de points
[Termes IGN] approche hiérarchique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Automatic registration of multiple point clouds is a significant preprocessing step for 3D computer vision tasks including semantic segmentation, 3D modelling, change detection, etc. Many methods were proposed to deal with this problem and yet most of them are not fully utilizing the redundant information offered by multiple common overlaps among point clouds. The existing methods are also inefficient when dealing with large-scale point clouds. In this paper, a novel automatic registration framework is presented to align point clouds efficiently and robustly. First, the overall number of scans is grouped into several scan-blocks by a proposed blocking strategy, and we build the pairwise relationship among scans through a fully connected graph in each scan-block. Second, perform loop-based coarse registration in each scan-block using a proposed false matches removal strategy. The proposed strategy can effectively identify grossly wrong scan-to-scan matches. Third, the minimum spanning tree is extracted from the graph, and ICP is applied along its edges. Moreover, the Lu–Milios algorithm is used to further optimize all poses at once by utilizing all redundant information in each scan-block. Finally, global block-to-block registration aligns all scan-blocks into a uniform coordinate reference. We test our framework on challenging WHU-TLS datasets, ETH datasets, and Robotic 3D Scan datasets to evaluate the efficiency, accuracy, as well as robustness. The experiment results show that our method achieves the state-of-the-art accuracy, while the time performance is improved by more than 30% compared with the state-of-the-art algorithms. Our source code is made available at https://github.com/WuHao-WHU/HL-MRF for benchmarking purposes. Numéro de notice : A2023-008 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.004 Date de publication en ligne : 19/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102112
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 65 - 76[article]Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]Development of object detectors for satellite images by deep learning / Alissa Kouraeva (2022)
Titre : Development of object detectors for satellite images by deep learning Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 57 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 3e année, Cycle PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] angle d'incidence
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image aérienne
[Termes IGN] image Pléiades-HR
[Termes IGN] image Pléiades-Neo
[Termes IGN] jeu de données
[Termes IGN] OpenStreetMap
[Termes IGN] réalité de terrain
[Termes IGN] recalage d'imageMots-clés libres : Frame Field Learning algorithm Index. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) With various uses cases in different sectors - marine, cartography, defense - object detection in satellite images is at the heart of image processing methods. This study aims to test existing building detection algorithms and improve them with the final goal being a precise cartography of buildings for 3D reconstruction with a high level of details. The Polygonization by Frame Field Learning algorithm is tested on different types of images: aerial images (50cm resolution), satellite images with 50cm (Pleiades) and 30cm (Pleiades Neo) resolutions. The ground truth is either already provided (Digitanie) or has to be retrieved from open access databases (OSM or BD TOPO IGN). Some problems of ground truth overlap appear in Pleiades neo images due to the relative precision in positioning of different data and also due to the incidence angle, that provides a greater revisiting capability. A re-implementation of the Frame Field Learning algorithm with the PyTorch Lightning framework is done in this study, with different experiments conducted concerning the configuration of the algorithm. Note de contenu : Introduction
1- Data
2- Methods
3- Results and discussion
ConclusionNuméro de notice : 24052 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Airbus Defence and Space Geo SA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101926
Titre : Registration of heterogenous data for urban modeling Type de document : Thèse/HDR Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Directeur de thèse ; Bruno Vallet , Directeur de thèse Editeur : Champs-sur-Marne : Ecole des Ponts ParisTech Année de publication : 2022 Projets : BIOM / Vallet, Bruno Importance : 160 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur à l'École des Ponts ParisTech, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] état de l'art
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données localisées
[Termes IGN] méthode robuste
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] primitive géométrique
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segment de droiteIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse fait partie du projet Modelisation Intérieur/Extérieur de Bâtiments (BIOM) qui vise à la modélisation automatique et simultanée de l’intérieur et de l’extérieur de bâtiments à partir de données hétérogènes. L'hétérogénéité est à la fois dans le type de données (image et Light Detection and Ranging (LiDAR)) et la plate-forme d'acquisition: acquisition terrestre intérieure/extérieure ou aérienne. Le premier enjeu d'une telle modélisation est donc de recaler précisément ces données. Les travaux menés ont confirmé que l'environnement et le type de données conditionnent le choix de l'algorithme de recalage. Notre contribution consiste à exploiter les propriétés fondamentales des données et des plateformes d'acquisition afin de proposer des solutions potentielles à tous les problèmes de recalage rencontrés par le projet. Comme dans un environnement de bâtiments la plupart des objets sont composés de primitives géométriques (polygones planaires, lignes droites, ouvertures), nous avons choisi d'introduire des algorithmes de recalage reposant sur ces primitives. L'idée de base de ces algorithmes consiste en la définition d'une énergie globale entre les primitives extraites à partir des jeux de données à recaler et la proposition d'une méthode robuste pour optimiser cette énergie basée sur le paradigme RANSAC. Notre contribution va de la proposition de méthodes robustes pour extraire les primitives sélectionnées à l'intégration de ces primitives dans un cadre de recalage efficace. Nos solutions ont dépassé les limites des algorithmes existants et ont prouvé leur efficacité pour résoudre les problèmes rencontrés par le projet, tels que le recalage intérieur/extérieur, le recalage d'image/LiDAR et le recalage aérien/terrestre. Note de contenu : 1. Context and research problem
1.1 Introduction
1.2 BIOM project
1.3 Objectives
1.4 Building Information Modeling
1.5 Registration problem
1.6 Images registration
1.7 Point clouds registration
1.8 Contributions
1.9 Thesis outline
1.10 Publication List
2. Data description
2.1 Introduction
2.2 Image data
2.3 LiDAR data
2.4 Conclusion
3. Primitives detection
3.1 Introduction
3.2 Classification of primitives extraction methods
3.3 Performance evaluation
3.4 Planar polygons extraction
3.5 3D line segment detection from LIDAR data
3.6 3D lines segments detection and reconstruction from image data
3.7 Openings detection
3.8 Conclusion
4. Indoor/Outdoor Registration
4.1 Introduction
4.2 State of the art
4.3 Data
4.4 Planar polygons based registration
4.5 Openings based registration
4.6 Hybrid solution
4.7 Conclusion
5. Image/LiDAR data Registration 104
5.1 Introduction
5.2 State of the art
5.3 Overview and contributions
5.4 3D Segment Extraction
5.5 3D segments based registration
5.6 Iterative Closest Line (ICL)
5.7 Evaluation and discussion
5.8 Conclusion
6. Aerial/Terrestrial registration
6.1 Introduction
6.2 State of the art
6.3 3D segment extraction from heterogeneous image data
6.4 3D segments based algorithm adaptation
6.5 Evaluation and discussion
6.6 Conclusion
7. Conclusion
7.1 Contributions
7.2 Future work
Appendices
A. Implementation
B. MLSD ImprovementNuméro de notice : 26842 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : ENPC : 2022 Organisme de stage : Laboratoire d'Informatique Gaspard-Monge LIGM nature-HAL : Thèse DOI : sans Date de publication en ligne : 30/08/2022 En ligne : https://pastel.hal.science/tel-03764907/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101526
Titre : Traitement possibiliste d'images, application au recalage d'images Type de document : Thèse/HDR Auteurs : Wissal Ben Markouza, Auteur ; Basel Solaiman, Directeur de thèse ; Khaled Bsaïes, Directeur de thèse Editeur : Institut Mines-Télécom Atlantique IMT Atlantique Année de publication : 2022 Importance : 151 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Ecole Nationale Supérieure Mines-Télécom Atlantique, Spécialité Signal, image, visionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] classification dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation (mathématiques)
[Termes IGN] recalage d'image
[Termes IGN] sous ensemble flou
[Termes IGN] théorie des possibilitésIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans ce travail, nous proposons un système de recalage géométrique possibiliste qui fusionne les connaissances sémantiques et les connaissances au niveau du gris des images à recaler. Les méthodes de recalage géométrique existantes se reposent sur une analyse des connaissances au niveau des capteurs lors de la détection des primitives ainsi que lors de la mise en correspondance. L'évaluation des résultats de ces méthodes de recalage géométrique présente des limites au niveau de la perfection de la précision causées par le nombre important de faux amers. L’idée principale de notre approche proposée est de transformer les deux images à recaler en un ensemble de projections issues des images originales (source et cible). Cet ensemble est composé des images nommées « cartes de possibilité », dont chaque carte comporte un seul contenu et présente une distribution possibiliste d’une classe sémantique des deux images originales. Le système de recalage géométrique basé sur la théorie de possibilités proposé présente deux contextes : un contexte supervisé et un contexte non supervisé. Pour le premier cas de figure nous proposons une méthode de classification supervisée basée sur la théorie des possibilités utilisant les modèles d'apprentissage. Pour le contexte non supervisé, nous proposons une méthode de clustering possibiliste utilisant la méthode FCM-multicentroide. Les deux méthodes proposées fournissent en résultat les ensembles de classes sémantiques des deux images à recaler. Nous créons par la suite, les bases de connaissances pour le système de recalage possibiliste proposé. Nous avons amélioré la qualité du recalage géométrique existant en termes de perfection de précision, de diminution du nombre de faux amers et d'optimisation de la complexité temporelle. Note de contenu : Introduction générale
1- Etat de l'art
2- Recalage d'images : approche géométrique
3- estimation des distributions des possibilités pour le recalage géométrique
4- Systeme de recalage possibiliste
5- Expérimentation et évaluation du système de recalage possibiliste
Conclusions et perspectivesNuméro de notice : 24088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, image, vision : Mines-Télécom Atlantique : 2022 Organisme de stage : Laboratoire de Traitement de l'Information Medicale DOI : sans En ligne : https://theses.hal.science/tel-03917545 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102480 Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)PermalinkSRP, une base de calage 3D de très haute précision sur le continent africain / Laure Chandelier in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkCorrection radiométrique et recalage de nuages de points pour la reconstruction tridimensionnelle d'oeuvres du patrimoine culturel / Nathan Sanchiz (2021)PermalinkImage matching from handcrafted to deep features: A survey / Jiayi Ma in International journal of computer vision, vol 29 n° 1 (January 2021)PermalinkTraitement d'images multispectrales et spatialisation des données pour la caractérisation de la matière organique des phases solides naturelles / Kevin Jacq (2019)PermalinkLocalisation par l'image en milieu urbain : application à la réalité augmentée / Antoine Fond (2018)PermalinkPermalinkLocalisation basée amers visuels : détection et mise à jour d’amers avec gestion des incertitudes / Xiaozhi Qu (2017)PermalinkTélédétection pour l'observation des surfaces continentales, Ch. 2. Analyse de scènes urbaines avec un véhicule de cartographie mobile / Bruno Vallet (2017)PermalinkPermalink