Descripteur
Documents disponibles dans cette catégorie (1765)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Deblurring low-light images with events / Chu Zhou in International journal of computer vision, vol 131 n° 5 (May 2023)
[article]
Titre : Deblurring low-light images with events Type de document : Article/Communication Auteurs : Chu Zhou, Auteur ; Minggui Teng, Auteur ; Jin Han, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1284 - 1298 Note générale : bilbiographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] caméra d'événement
[Termes IGN] correction d'image
[Termes IGN] filtrage du bruit
[Termes IGN] flou
[Termes IGN] image à basse résolution
[Termes IGN] image RVBRésumé : (auteur) Modern image-based deblurring methods usually show degenerate performance in low-light conditions since the images often contain most of the poorly visible dark regions and a few saturated bright regions, making the amount of effective features that can be extracted for deblurring limited. In contrast, event cameras can trigger events with a very high dynamic range and low latency, which hardly suffer from saturation and naturally encode dense temporal information about motion. However, in low-light conditions existing event-based deblurring methods would become less robust since the events triggered in dark regions are often severely contaminated by noise, leading to inaccurate reconstruction of the corresponding intensity values. Besides, since they directly adopt the event-based double integral model to perform pixel-wise reconstruction, they can only handle low-resolution grayscale active pixel sensor images provided by the DAVIS camera, which cannot meet the requirement of daily photography. In this paper, to apply events to deblurring low-light images robustly, we propose a unified two-stage framework along with a motion-aware neural network tailored to it, reconstructing the sharp image under the guidance of high-fidelity motion clues extracted from events. Besides, we build an RGB-DAVIS hybrid camera system to demonstrate that our method has the ability to deblur high-resolution RGB images due to the natural advantages of our two-stage framework. Experimental results show our method achieves state-of-the-art performance on both synthetic and real-world images. Numéro de notice : A2023-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-023-01754-5 Date de publication en ligne : 06/02/2023 En ligne : https://doi.org/10.1007/s11263-023-01754-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103062
in International journal of computer vision > vol 131 n° 5 (May 2023) . - pp 1284 - 1298[article]Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times / Peng Wang in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
[article]
Titre : Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times Type de document : Article/Communication Auteurs : Peng Wang, Auteur ; Hongyu Yao, Auteur ; Bo Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5401217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] données multitemporelles
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Most pansharpening methods refer to the fusion of the original low-resolution multispectral (MS) and high-resolution panchromatic (PAN) images acquired simultaneously over the same area. Due to its good robustness, multiresolution analysis (MRA) has become one of the important categories of pansharpening methods. However, when only MS and PAN images acquired at different times can be provided, the fusion results from current MRA methods are often not ideal due to the failure to effectively analyze multitemporal misalignments between MS and PAN images from different times. To solve this issue, MRA pansharpening based on variation factor for MS and PAN images from different times is proposed. The MRA pansharpening based on dual-scale regression model is first established, and the variation factor is then introduced to effectively analyze the multitemporal misalignments by using the alternating direction method of multipliers (ADMM), yielding the final fusion results. Experiments with synthetic and real datasets show that the proposed method exhibits significant performance improvement compared to the traditional pansharpening methods, as well as the state-of-the-art MRA methods. Visual comparisons demonstrate that the variation factor introduces encouraging improvements in the compensation of multitemporal misalignments in ground objects and advances pansharpening applications for MS and PAN images acquired at different times. Numéro de notice : A2023-184 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3252001 En ligne : https://doi.org/10.1109/TGRS.2023.3252001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102956
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5401217[article]Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping / Luc Baudoux in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Multi-nomenclature, multi-resolution joint translation: an application to land-cover mapping Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Année de publication : 2023 Projets : AI4GEO / Article en page(s) : pp 403 - 437 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] harmonisation des données
[Termes IGN] nomenclature
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Land-use/land-cover (LULC) maps describe the Earth’s surface with discrete classes at a specific spatial resolution. The chosen classes and resolution highly depend on peculiar uses, making it mandatory to develop methods to adapt these characteristics for a large range of applications. Recently, a convolutional neural network (CNN)-based method was introduced to take into account both spatial and geographical context to translate a LULC map into another one. However, this model only works for two maps: one source and one target. Inspired by natural language translation using multiple-language models, this article explores how to translate one LULC map into several targets with distinct nomenclatures and spatial resolutions. We first propose a new data set based on six open access LULC maps to train our CNN-based encoder-decoder framework. We then apply such a framework to convert each of these six maps into each of the others using our Multi-Landcover Translation network (MLCT-Net). Extensive experiments are conducted at a country scale (namely France). The results reveal that our MLCT-Net outperforms its semantic counterparts and gives on par results with mono-LULC models when evaluated on areas similar to those used for training. Furthermore, it outperforms the mono-LULC models when applied to totally new landscapes. Numéro de notice : A2023-075 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2120996 Date de publication en ligne : 10/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2120996 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101797
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 403 - 437[article]In-camera IMU angular data for orthophoto projection in underwater photogrammetry / Erica Nocerino in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
[article]
Titre : In-camera IMU angular data for orthophoto projection in underwater photogrammetry Type de document : Article/Communication Auteurs : Erica Nocerino, Auteur ; Fabio Menna, Auteur Année de publication : 2023 Article en page(s) : n° 100027 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] caméra numérique
[Termes IGN] carte bathymétrique
[Termes IGN] centrale inertielle
[Termes IGN] compensation par faisceaux
[Termes IGN] mesure géodésique
[Termes IGN] orthophotographie
[Termes IGN] photogrammétrie sous-marine
[Termes IGN] positionnement par GNSS
[Termes IGN] redressement différentiel
[Termes IGN] roulis
[Termes IGN] structure-from-motion
[Termes IGN] tangageRésumé : (auteur) Among photogrammetric products, orthophotos are probably the most versatile and widely used in many fields of application. In the last years, coupled with the spread of semi-automated survey and processing approaches based on photogrammetry, orthophotos have become almost a standard for monitoring the underwater environment. If on land the definition of the reference coordinate system and projection plane for the orthophoto generation is trivial, underwater it may represent a challenge. In this paper, we address the issue of defining the vertical direction and resulting horizontal plane (levelling) for the differential ortho rectification. We propose a non-invasive, contactless method based on roll and pitch angular data provided by in-camera IMU sensors and embedded in the Exif metadata of JPEG and raw image files. We show how our approach can be seamlessly integrated into automatic SfM/MVS pipelines, provide the mathematical background, and showcase real-world applications results in an underwater monitoring project. The results illustrate the effectiveness of the proposed method and, for the first time, provide a metric evaluation of the definition of the vertical direction with low-cost sensors enclosed in digital cameras directly underwater. Numéro de notice : A2023-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Numéro de périodique DOI : 10.1016/j.ophoto.2022.100027 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102493
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100027[article]A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)
[article]
Titre : A machine learning method for Arctic lakes detection in the permafrost areas of Siberia Type de document : Article/Communication Auteurs : Piotr Janiec, Auteur ; Jakub Nowosad, Auteur ; Sbigniew Zwoliński, Auteur Année de publication : 2023 Article en page(s) : n° 2163923 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] lac glaciaire
[Termes IGN] MERIT
[Termes IGN] modèle numérique de surface
[Termes IGN] pergélisol
[Termes IGN] Short Waves InfraRed
[Termes IGN] SibérieRésumé : (auteur) Thermokarst lakes are the main components of the vast Arctic and subarctic landscapes. These lakes can serve as geoindicators of permafrost degradation; therefore, proper lake distribution assessment methods are necessary. In this study, we compared four machine learning methods to improve existing lake detection systems. The northern part of Yakutia was selected as the study area owing to its complex environment. We used data from Landsat 8 and spectral indices to take into account the spectral characteristics of the lakes, and MERIT DEM data to take into account the topography. The lowest accuracy was found for the classification and regression trees (CART) method (overall accuracy = 81%). On the other hand, the random forests (RF) classification provided the best results (overall accuracy = 92%), and only this classification coped well in all problematic areas, such as shaded and humid areas, near steep slopes, burn scars, and rivers. The altitude and bands SWIR1 (Short wave infrared 1), SWIR2 (Short wave infrared 2), and Green were the most important. Spectral indices did not have significant impact on the classification results in the specific conditions of the thermokarst lakes environment. 17,700 lakes were identified with the total area of 271.43 km2. Numéro de notice : A2023-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2163923 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2163923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103156
in European journal of remote sensing > vol 56 n° 1 (2023) . - n° 2163923[article]A real-time algorithm for continuous navigation in intelligent transportation systems using LiDAR-Gyroscope-Odometer integration / Tarek Hassan in Journal of applied geodesy, vol 17 n° 1 (January 2023)PermalinkDiscriminating pure Tamarix species and their putative hybrids using field spectrometer / Solomon G. Tesfamichael in Geocarto international, vol 37 n° 25 ([01/12/2022])PermalinkSingle-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms / Yadong Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)PermalinkBenchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest / Daniel Kükenbrink in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)PermalinkDeep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques / Wang Yue in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)PermalinkLarge-area high spatial resolution albedo retrievals from remote sensing for use in assessing the impact of wildfire soot deposition on high mountain snow and ice melt / André Bertoncini in Remote sensing of environment, vol 278 (September 2022)Permalink3D browsing of wide-angle fisheye images under view-dependent perspective correction / Mingyi Huang in Photogrammetric record, vol 37 n° 178 (June 2022)PermalinkLa puissance spatiale chinoise s’affirme / Laurent Polidori in Géomètre, n° 2203 (juin 2022)PermalinkSmartphone digital photography for fractional vegetation cover estimation / Gaofei Yin in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)PermalinkPolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)Permalink