Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Canada > Ontario (Canada)
Ontario (Canada) |
Documents disponibles dans cette catégorie (54)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) / Masoud Azad in Applied geomatics, vol 14 n° 4 (December 2022)
[article]
Titre : A semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) Type de document : Article/Communication Auteurs : Masoud Azad, Auteur ; Farshid Farnood Ahmadi, Auteur Année de publication : 2022 Article en page(s) : pp 589 - 607 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image aérienne
[Termes IGN] Iran
[Termes IGN] modèle numérique de terrain
[Termes IGN] segmentation d'image
[Termes IGN] seuillage
[Termes IGN] Toronto
[Termes IGN] zone urbaineRésumé : (auteur) In this article, a new feature detection approach based on integration of LiDAR data and visible images in the form of a semi-automatic method has been proposed. In this approach, a two-step method for feature detection was developed using object-based analysis in order to increase the level of automation and level of accuracy in the detection process. The first step is providing a method for integration of two data sources for detection process by maintaining independency between image data and LiDAR altimetric data. In this step, the feature detection process is started based on image data and for detecting areas that detection properly is not done, LiDAR altimetric data is used. In the second step, a new method for detection of vegetation is implemented. Of the characteristics of this method is that there is no need to use the infrared band in the image data and also there is no need for LiDAR intensity data. The implemented method in the recent step is based on the new indices developed for detection of vegetation using three visible bands (red, green, and blue). The results of applying the method on two sample data sets show that the proposed approach and developed indices have the lowest dependency on the type and region of imaging and about each input image data includes visible bands (red, green, and blue) along with LiDAR data (that both data have a high spatial resolution), feature detection process is done with acceptable accuracy. Only thresholds depend on image data and change about different images. The changes are very small. Therefore, using the mean of these thresholds, despite may not be optimal for all image data, but generally is useful and for different images is efficient. In the case of many accessible images from Iran, the thresholds determined optimally by the trial-and-error method, the changes were very small. About the image data of Toronto and Iran which great changes were expected in the thresholds, the optimal thresholds showed very small changes. The results of this research demonstrated that the proposed method can successfully detect urban features (include vegetation, road, and building) with different shapes. Evaluation process showed that the overall accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy of the proposed method about vegetation are 97%, 92%, 96%, and 94%, respectively. Also, the producer’s accuracy, user’s accuracy, and kappa coefficient about the building class are 94%, 95%, and 91%, respectively. About the road class these parameters are 95%, 89%, and 91%. Numéro de notice : A2022-892 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00455-x Date de publication en ligne : 10/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00455-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102239
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 589 - 607[article]Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto / Xiaocong Xu in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto Type de document : Article/Communication Auteurs : Xiaocong Xu, Auteur ; Dachuan Zhang, Auteur ; Xiaoping Liu, Auteur ; Jinpei Ou, Auteur ; Xinxin Wu, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] durée de trajet
[Termes IGN] modèle de simulation
[Termes IGN] outil d'aide à la décision
[Termes IGN] Toronto
[Termes IGN] transport collectifRésumé : (auteur) The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes. Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy, leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types. To overcome these limitations, an Accessibility-interacted Vector-based Cellular Automata (A-VCA) model was proposed for the better simulation of realistic land use change among different urban functional types. The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process. The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto, Canada, during 2012–2016. A vector-based CA without considering the driving factor of accessibility (VCA) and a popular grid-based CA model (Future Land Use Simulation, FLUS) were also implemented for comparisons. The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature (kappa = 0.907, figure of merit = 0.283, and cumulative producer’s accuracy = 72.83% ± 1.535%). The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models, suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy. The proposed model provides new tools for a better simulation of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning. Numéro de notice : A2022-451 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/10095020.2022.2043730 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2043730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100397
in Geo-spatial Information Science > vol 25 n° 3 (October 2022)[article]Temporal transitions of demographic dot maps / Jeff Allen in International journal of cartography, vol 8 n° 2 (July 2022)
[article]
Titre : Temporal transitions of demographic dot maps Type de document : Article/Communication Auteurs : Jeff Allen, Auteur Année de publication : 2022 Article en page(s) : pp 208 - 222 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatio-temporelle
[Termes IGN] carte de répartition par points
[Termes IGN] carte interactive
[Termes IGN] distribution spatiale
[Termes IGN] données démographiques
[Termes IGN] données localisées historiques
[Termes IGN] interpolation linéaire
[Termes IGN] pauvreté
[Termes IGN] population
[Termes IGN] répartition géographique
[Termes IGN] représentation cartographique
[Termes IGN] représentation du changement
[Termes IGN] Toronto
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Dot maps are often used to display the distributions of populations over space. This paper details a method for extending dot maps in order to visualize changes in spatial patterns over time. Specifically, we outline a selective linear interpolation procedure to encode the time range in which dots are visible on a map, which then allows for temporal queries and animation. This methodology is exemplified first by animating population growth across the United States, and second, through an interactive application showing changing poverty distributions in Toronto, Canada. Numéro de notice : A2022-920 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2021.1910184 Date de publication en ligne : 18/05/2021 En ligne : https://doi.org/10.1080/23729333.2021.1910184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102460
in International journal of cartography > vol 8 n° 2 (July 2022) . - pp 208 - 222[article]Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Detecting spatiotemporal traffic events using geosocial media data Type de document : Article/Communication Auteurs : Shishuo Xu, Auteur ; Songnian Li, Auteur ; Wei Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101797 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] planification urbaine
[Termes IGN] sécurité routière
[Termes IGN] Toronto
[Termes IGN] trafic routier
[Termes IGN] TwitterRésumé : (auteur) Social media platforms enable efficient traffic event detection by allowing users to produce geo-tagged content (e.g., tweets) known as geosocial media data. Geosocial media data improve road safety by providing timely updates for traffic flow and traffic control. Recent studies on traffic event detection with geosocial media data have been focused around keyword-based query approaches, where the event content was inferred by predetermined categories, to retrieve relevant traffic events. Spatiotemporal features associated with traffic-related posts have not been fully investigated. In this study, we filtered irrelevant posts with association rules. A spatiotemporal clustering-based method was then used to retrieve traffic events from these filtered posts, where the content of detected events was automatically inferred with a set of representative terms. For comparison, a typical text classification-based method was also used by classifying the posts filtered from association rules into different categories. By validating the detection results with vehicle travel speed data, we demonstrate that the former outperforms the latter in terms of the number of correctly detected traffic events from one-year of Twitter data in Toronto, Canada. Our proposed approach helps organizations and governments to be aware of when and where traffic events occur by identifying event hotspots and peak periods, which improves both traffic management and urban planning. Numéro de notice : A2022-264 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101797 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100261
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101797[article]Efficient calculation of distance transform on discrete global grid systems / Meysam Kazemi in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
[article]
Titre : Efficient calculation of distance transform on discrete global grid systems Type de document : Article/Communication Auteurs : Meysam Kazemi, Auteur ; Lakin Wecker, Auteur ; Faramarz Samavati, Auteur Année de publication : 2022 Article en page(s) : n° 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] ArcGIS
[Termes IGN] distance
[Termes IGN] données vectorielles
[Termes IGN] frontière
[Termes IGN] maillage par triangles
[Termes IGN] Ontario (Canada)
[Termes IGN] sphèroïde
[Termes IGN] système d'information géographique
[Termes IGN] système de grille globale discrète
[Termes IGN] transformationRésumé : (auteur) Numéro de notice : A2022-411 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11060322 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.3390/ijgi11060322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100761
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 322[article]Integration of heterogeneous terrain data into Discrete Global Grid Systems / Mingke Li in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)PermalinkThe spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis / Matthew Quick in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)PermalinkEffects of radiometric correction on cover type and spatial resolution for modeling plot level forest attributes using multispectral airborne LiDAR data / Wai Yeung Yan in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)PermalinkOpenStreetMap quality assessment using unsupervised machine learning methods / Kent T. Jacobs in Transactions in GIS, Vol 24 n° 5 (October 2020)PermalinkPredicting carbon accumulation in temperate forests of Ontario, Canada using a LiDAR-initialized growth-and-yield model / Paulina T. Marczak in Remote sensing, vol 12 n° 1 (January 2020)PermalinkExploitation of deep learning in the automatic detection of cracks on paved roads / Won Mo Jung in Geomatica, vol 73 n° 2 (June 2019)PermalinkUsing Network Segments in the Visualization of Urban Isochrones / Jeff Allen in Cartographica, vol 53 n° 4 (Winter 2018)PermalinkA new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)PermalinkObject-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)PermalinkDigital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level / Tristan R.H. Goodbody in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)Permalink