Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > formation végétale > forêt > couvert forestier
couvert forestierVoir aussi |
Documents disponibles dans cette catégorie (102)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds / Xiaoqiang Liu in Remote sensing of environment, vol 282 (December 2022)
[article]
Titre : A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds Type de document : Article/Communication Auteurs : Xiaoqiang Liu, Auteur ; Qin Ma, Auteur ; Xiaoyong wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] couvert forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] écosystème forestier
[Termes IGN] entropie
[Termes IGN] estimation par noyau
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) Forest canopy structural complexity (CSC) describes the three-dimensional (3D) arrangement of canopy elements, and has become an emergent forest attribute mediating forest ecosystem functioning along with species diversity. Light detection and ranging (lidar), especially the emerging near-surface lidar platforms (e.g., terrestrial laser scanning/TLS, backpack laser scanning/BLS, unmanned aerial vehicle laser scanning/ULS), can depict 3D canopy information with high efficiency and accuracy, providing an ideal data source for forest CSC quantification. However, current existing lidar-based CSC quantification indices may share common limitations of getting saturated in structurally complex forest stands and not fully capturing within-canopy structural variations. In this study, we introduced the concept of entropy into forest CSC quantification, and proposed a new forest CSC index, namely canopy entropy (CE). Two major bottlenecks were addressed in the CE calculation procedure, including (1) using a Mann-Kendall (MK) test-based resampling strategy to address the issue of incongruent sampling chances of canopy elements at different locations from different lidar systems, and (2) using a kernel density estimation (KDE)-based method to reduce its dependence on point density. The effectiveness and generality of CE were evaluated by simulating TLS and ULS point clouds from nine forest stands and collecting TLS, BLS, and ULS point clouds from 110 field plots distributed in five forest sites, covering a large variety of forest types and forest CSC conditions. The results showed that CE was an effective forest CSC quantification index that successfully captured CSC variations caused by both tree density and the number of vertical canopy layers. It had significant positive correlations with four widely used CSC indices (i.e., canopy cover, foliage height diversity, canopy top rugosity, and fractal dimension; R2: 0.32 to 0.67), but outperformed them by overcoming their common limitations. CE estimates from multiplatform lidar point clouds agreed well with each other (R2 ≥ 0.70, RMSE ≤0.10), indicating it has generality in cross-platform forest CSC quantification practices. We believe the proposed CE index has great potential to help us unravel the correlations among forest CSC, species diversity, and forest ecosystem functions, and therefore improve our understanding on forest ecosystem processes. Numéro de notice : A2022-795 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113280 Date de publication en ligne : 26/09/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113280 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101930
in Remote sensing of environment > vol 282 (December 2022) . - n° 113280[article]The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
[article]
Titre : The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Fardin Moradi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] placette d'échantillonnage
[Termes IGN] Quercus (genre)Résumé : (auteur) Forest canopy cover (FCC) is one of the most important forest inventory parameters and plays a critical role in evaluating forest functions. This study examines the potential of integrating Sentinel-1 (S-1) and Sentinel-2 (S-2) data to map FCC in the heterogeneous Mediterranean oak forests of western Iran in different data densities (one-year datasets vs. three-year datasets). This study used very high-resolution satellite images from Google Earth, gridded points, and field inventory plots to generate a reference dataset. Based on it, four FCC classes were defined, namely non-forest, sparse forest (FCC = 1–30%), medium-density forest (FCC = 31–60%), and dense forest (FCC > 60%). In this study, three machine learning (ML) models, including Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART), were used in the Google Earth Engine and their performance was compared for classification. Results showed that the SVM produced the highest accuracy on FCC mapping. The three-year time series increased the ability of all ML models to classify FCC classes, in particular the sparse forest class, which was not distinguished well by the one-year dataset. Class-level accuracy assessment results showed a remarkable increase in F-1 scores for sparse forest classification by integrating S-1 and S-2 (10.4% to 18.2% increased for the CART and SVM ML models, respectively). In conclusion, the synergetic use of S-1 and S-2 spectral temporal metrics improved the classification accuracy compared to that obtained using only S-2. The study relied on open data and freely available tools and can be integrated into national monitoring systems of FCC in Mediterranean oak forests of Iran and neighboring countries with similar forest attributes. Numéro de notice : A2022-649 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080423 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.3390/ijgi11080423 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101465
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 423[article]Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach Type de document : Article/Communication Auteurs : Linyuan Li, Auteur ; Xihan Mu, Auteur ; Francesco Chianucci, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102686 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couvert forestier
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] faisceau laser
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] sous-étage
[Termes IGN] structure-from-motionRésumé : (auteur) Accurate wall-to-wall estimation of forest crown cover is critical for a wide range of ecological studies. Notwithstanding the increasing use of UAVs in forest canopy mapping, the ultrahigh-resolution UAV imagery requires an appropriate procedure to separate the contribution of understorey from overstorey vegetation, which is complicated by the spectral similarity between the two forest components and the illumination environment. In this study, we investigated the integration of deep learning and the combined data of imagery and photogrammetric point clouds for boreal forest canopy mapping. The procedure enables the automatic creation of training sets of tree crown (overstorey) and background (understorey) data via the combination of UAV images and their associated photogrammetric point clouds and expands the applicability of deep learning models with self-supervision. Based on the UAV images with different overlap levels of 12 conifer forest plots that are categorized into “I”, “II” and “III” complexity levels according to illumination environment, we compared the self-supervised deep learning-predicted canopy maps from original images with manual delineation data and found an average intersection of union (IoU) larger than 0.9 for “complexity I” and “complexity II” plots and larger than 0.75 for “complexity III” plots. The proposed method was then compared with three classical image segmentation methods (i.e., maximum likelihood, Kmeans, and Otsu) in the plot-level crown cover estimation, showing outperformance in overstorey canopy extraction against other methods. The proposed method was also validated against wall-to-wall and pointwise crown cover estimates using UAV LiDAR and in situ digital cover photography (DCP) benchmarking methods. The results showed that the model-predicted crown cover was in line with the UAV LiDAR method (RMSE of 0.06) and deviate from the DCP method (RMSE of 0.18). We subsequently compared the new method and the commonly used UAV structure-from-motion (SfM) method at varying forward and lateral overlaps over all plots and a rugged terrain region, yielding results showing that the method-predicted crown cover was relatively insensitive to varying overlap (largest bias of less than 0.15), whereas the UAV SfM-estimated crown cover was seriously affected by overlap and decreased with decreasing overlap. In addition, canopy mapping over rugged terrain verified the merits of the new method, with no need for a detailed digital terrain model (DTM). The new method is recommended to be used in various image overlaps, illuminations, and terrains due to its robustness and high accuracy. This study offers opportunities to promote forest ecological applications (e.g., leaf area index estimation) and sustainable management (e.g., deforestation). Numéro de notice : A2022-192 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102686 Date de publication en ligne : 05/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99951
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102686[article]An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 Type de document : Article/Communication Auteurs : Darius Phiri, Auteur ; Collins Chanda, Auteur ; Vincent R. Nyirenda, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par arbre de décision
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] protection de la biodiversité
[Termes IGN] ZambieRésumé : (auteur) In sub-Saharan Africa, protected areas provide a platform for conserving biodiversity. However, these areas are facing massive pressure due to deforestation, and information on forest dynamics and factors driving the changes in protected areas is generally lacking. This study has two objectives: (1) to assess forest cover changes that have occurred between 1972 and 2016 in Copperbelt Province’s protected areas, and (2) understand the drivers of forest cover changes. The study used thematic land cover maps for six selected years, which were classified using an object-based image analysis (OBIA) approach. We also applied a Classification Tree (CT) approach to assess the drivers of forest cover changes using R statistical software. The findings showed that forest cover in protected areas has been characterised by massive deforestation due to various factors. Between 1972 and 2016, primary and secondary forests showed a decrease of 2,226.43 km2 (11.06%) and an increase of 1,082.93 km2 (4.05%), respectively. The major factors driving forest changes include the levels of precipitation, human population density, elevation, distance from roads, towns and rivers. This study presents consistent information for long-term forest monitoring in protected areas, and informs decision-makers on the levels of deforestation and their drivers for effective forest management. Numéro de notice : A2022-092 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/19475705.2021.2017021 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2017021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99515
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 148 - 166[article]
Titre : Radar backscatter contribution to tropical forest disturbance monitoring Type de document : Thèse/HDR Auteurs : Bertrand Ygorra, Auteur ; Jean-Pierre Wigneron, Directeur de thèse ; Serge Riazanoff, Directeur de thèse ; Frédéric Frappart, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2022 Importance : 253 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de BordeauxLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] forêt tropicale
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] télédétection en hyperfréquenceIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Earth Observations are increasingly used to monitor environmental problems. Its interests lie in the ability of sensors aboard satellites to provide information at global, regional and local scales. Optical remote sensing has shown great potential for the monitoring of forest disturbances. Until recently, deforestation monitoring systems were mainly based on remotely sensed optical images. In the intertropical latitudes, such images often face limitations of frequent cloud cover, leading to late detection or misdetections due to the low temporal availability of new images uncontaminated by clouds. In tropical humid forests, regrowth can close canopy gaps between two non-cloud-contaminated optical images used for detection.New SAR (Synthetic Aperture Radar) systems have opened new perspectives for forest disturbance monitoring in tropical humid forests (Sentinel-1, PALSAR-2). These active sensors penetrate the clouds. The availability of Sentinel-1 C-band images at high spatial and temporal resolutions makes it a potential substitute of optical systems for monitoring disturbances in forest covers.This work is articulated around three parts. The first part consists in the development of a new change detection method for monitoring disturbances in forest cover, based on the Cumulative Sum algorithm (CuSum) combined with a bootstrap analysis. The method was applied to time-series of Sentinel-1 Ground-Range Detected (GRD) dual polarization (VV, VH) images obtained in a legal forest concession near Kisangani in the Democratic Republic of the Congo. The results from VV and VH polarization were intersected in VV x VH result map, and a spatial recombination of a high Critical Threshold (Tc) with a low critical threshold was performed. The second part of this work is to develop a multiple-breakpoints version of the CuSum cross-Tc called ReCuSum to further enhance the ability to monitor changes in forest cover. The development was made by applying the CuSum cross-Tc over a time-series in an iterative manner, in the State of Parà, Brazilian Amazon. The third axis of this thesis is to develop a Near-Real-Time (NRT) version of the CuSum cross-Tc and to compare it with the state-of-the-art NRT algorithms (RADD, JJ-FAST GLAD, DETER-B, DETER-R). Note de contenu :
Chapter 1. General introduction
1.1. Introduction
1.2. Thesis objectives and outline
Chapter 2. Radar remote sensing
2.1. The RADAR technique
2.2. Instrumental parameters
2.3. Scattering mechanisms
2.4. Synthetic Aperture Radar
2.5. Sentinel-1
Chapter 3. Methods for monitoring forest cover change using spaceborne SAR sensors
3.1. Introduction
3.2. Publication
3.3. Contribution and perspectives
Chapter 4. Monitoring forest disturbances from Sentinel-1 time-series: a CuSum?based approach
4.1. Introduction
4.2. Publication
4.3. Conference note: IGARSS 2021
4.4. Contribution to this work and perspectives in the PhD course
Chapter 5. Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum
5.1. Introduction
5.2. Publication
5.3. Conference note: IGARSS 2022
5.4. Contribution to this work and perspective
Chapter 6. Development of the CuSum cross-Tc as an NRT algorithm
6.1. Introduction
6.2. Publication
6.3. Contribution and perspectives
Chapter 7. Conclusion and perspectives
7.1. Conclusion
7.2. PerspectivesNuméro de notice : 26964 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Physique de l’environnement : Bordeaux : 2022 Organisme de stage : INRAE nature-HAL : Thèse DOI : sans Date de publication en ligne : 16/02/2023 En ligne : https://theses.hal.science/tel-03991973v1/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103001 PermalinkPermalinkMulti-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images / Yiying Hua in Forests, vol 12 n° 12 (December 2021)PermalinkRadiative transfer modeling in structurally complex stands: towards a better understanding of parametrization / Frédéric André in Annals of Forest Science, vol 78 n° 4 (December 2021)PermalinkForest cover mapping and Pinus species classification using very high-resolution satellite images and random forest / Laura Alonso-Martinez in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)PermalinkCharacterization of mixed and monospecific stands of Scots pine and Maritime pine: soil profile, physiography, climate and vegetation cover data / Daphne Lopez-Marcos in Annals of Forest Science, vol 78 n° 2 (June 2021)PermalinkModel-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing / Michael L. Benson in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)PermalinkAnalyse et consolidation des résultats sur les estimations de superficie du couvert forestier et de ses changements entre 2000 et 2016 en république du Congo / Suspense Averti Ifo in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkCartographie de l’occupation du sol du Gabon en 2015, changements entre 2010 et 2015 / Farrel Nzigou Boucka in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkAnalyse spatio-temporaire des dégradations et évolution des forêts par télédétection : cas du Parc National de Theniet El Had (Algérie) / Faouzi Berrichi in Bulletin des sciences géographiques, n° 32 (2019 - 2021)Permalink