Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Kouangtoung (Chine)
Kouangtoung (Chine)Synonyme(s)GuangdongVoir aussi |
Documents disponibles dans cette catégorie (46)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Sensing urban soundscapes from street view imagery / Tianhong Zhao in Computers, Environment and Urban Systems, vol 99 (January 2023)
[article]
Titre : Sensing urban soundscapes from street view imagery Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Xiucheng Liang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] bruit (audition)
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] paysage sonore
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] Shenzhen
[Termes IGN] Singapour
[Termes IGN] ville durable
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) A healthy acoustic environment is an essential component of sustainable cities. Various noise monitoring and simulation techniques have been developed to measure and evaluate urban sounds. However, sensing large areas at a fine resolution remains a great challenge. Based on machine learning, we introduce a new application of street view imagery — estimating large-area high-resolution urban soundscapes, investigating the premise that we can predict and characterize soundscapes without laborious and expensive noise measurements. First, visual features are extracted from street-level imagery using computer vision. Second, fifteen soundscape indicators are identified and a survey is conducted to gauge them solely from images. Finally, a prediction model is constructed to infer the urban soundscape by modeling the non-linear relationship between them. The results are verified with extensive field surveys. Experiments conducted in Singapore and Shenzhen using half a million images affirm that street view imagery enables us to sense large-scale urban soundscapes with low cost but high accuracy and detail, and provides an alternative means to generate soundscape maps. reaches 0.48 by evaluating the predicted results with field data collection. Further novelties in this domain are revealing the contributing visual elements and spatial laws of soundscapes, underscoring the usability of crowdsourced data, and exposing international patterns in perception. Numéro de notice : A2023-014 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101915 Date de publication en ligne : 20/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102131
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101915[article]A whale optimization algorithm–based cellular automata model for urban expansion simulation / Yuan Ding in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : A whale optimization algorithm–based cellular automata model for urban expansion simulation Type de document : Article/Communication Auteurs : Yuan Ding, Auteur ; Kai Cao, Auteur ; Weifeng Qiao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103093 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] coefficient de Gini
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] itération
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2022-826 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.jag.2022.103093 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103093 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102010
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103093[article]A GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management / Zhikun Ding in Sustainable Cities and Society, vol 86 (November 2022)
[article]
Titre : A GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management Type de document : Article/Communication Auteurs : Zhikun Ding, Auteur ; Xinping Wen, Auteur ; Xiaoyan Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aide à la décision
[Termes IGN] déchet
[Termes IGN] impact sur l'environnement
[Termes IGN] modèle empirique
[Termes IGN] modèle orienté agent
[Termes IGN] planification urbaine
[Termes IGN] Shenzhen
[Termes IGN] simulation dynamique
[Termes IGN] système d'information géographique
[Termes IGN] ville intelligenteRésumé : (auteur) A considerable amount of demolition waste (DW) generated by urbanization and urban renewal has brought significant threats to the environment. However, there is a serious lack of environmental impact assessment towards city-scale demolition waste management (DWM), particularly from the systematical and dynamical perspective. Traditionally the assessment has been conducted from a static perspective. The purpose of this paper is to comprehensively evaluate the environmental impact of city-scale DWM from a complex system perspective. A novel evaluation model was developed by innovatively integrating the geographic information system (GIS) and system hybrid simulation consisting of system dynamics (SD), agent-based modeling (ABM) and discrete event simulation (DES). The proposed model was verified. Based on an empirical analysis of Shenzhen, China, it is found that the environmental impact of city-scale DWM is mainly concentrated in the central and northeastern regions of Shenzhen, demonstrating spatial heterogeneity and regional aggregation. Furthermore, the results reveal that the model is robust and effective to assess environmental impact from four aspects, i.e., land occupation, water pollution, air pollution and energy consumption. The findings contribute to a better understanding of the status quo of city-scale DWM and accompanying environmental impacts, and coordinating various district governments to formulate effective DWM policies. Numéro de notice : A2022-817 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104108 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101983
in Sustainable Cities and Society > vol 86 (November 2022) . - n° 104108[article]Identify urban building functions with multisource data: a case study in Guangzhou, China / Yingbin Deng in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Identify urban building functions with multisource data: a case study in Guangzhou, China Type de document : Article/Communication Auteurs : Yingbin Deng, Auteur ; Renrong Chen, Auteur ; Yang Ji, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2060 - 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approche hiérarchique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment industriel
[Termes IGN] bâtiment public
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] données multisources
[Termes IGN] empreinte
[Termes IGN] exploration de données
[Termes IGN] Extreme Gradient Machine
[Termes IGN] figure géométrique
[Termes IGN] image Gaofen
[Termes IGN] logement
[Termes IGN] point d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) Building function type is an important parameter for urban planning and disaster management. However, existing identification methods do not always correctly recognize all building functions because of missing point of interest (POI) data in private areas. In this study, we proposed a hierarchical data-mining model to identify building function types using accessible auxiliary data, which was then applied to a case study. Residential building property was assessed to address missing residential POIs. The building functions were assigned to one of five different types, or a mixed-function type. Standard deviation and mean values extracted from remotely sensed images, distances to major roads, and building shape parameters were used to infer the function types of buildings without assigned function types. The proposed model was able to identify 65% of buildings not previously assigned as residential through the POI, with an overall accuracy of 87%. In addition, all buildings were successfully assigned a function type of residential, commercial, office, warehouse, public service, or mixed-function, with an overall accuracy of 85% for unclassified buildings. Our results demonstrated that missing POI data in private areas could be addressed by integration with multisource data using a simple method. Numéro de notice : A2022-739 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2046756 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2046756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101716
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2060 - 2085[article]Interactive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)PermalinkCoupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)PermalinkAn extended patch-based cellular automaton to simulate horizontal and vertical urban growth under the shared socioeconomic pathways / Yimin Chen in Computers, Environment and Urban Systems, vol 91 (January 2022)PermalinkIncorporation of spatial anisotropy in urban expansion modelling with cellular automata / Jinqu Zhang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)PermalinkUnderstanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors / Feng Gao in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)PermalinkA high-efficiency global model of optimization design of impervious surfaces for alleviating urban waterlogging in urban renewal / Huafei Yu in Transactions in GIS, Vol 25 n° 4 (August 2021)PermalinkGeographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)PermalinkPedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkUsing a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)Permalink