Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > capteur (télédétection) > pouvoir de résolution spectrale
pouvoir de résolution spectraleSynonyme(s)résolution spectraleVoir aussi |
Documents disponibles dans cette catégorie (18)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms / Yadong Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms Type de document : Article/Communication Auteurs : Yadong Li, Auteur ; Sébastien Mavromatis, Auteur ; Feng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3000224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image isolée
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth’s surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines L1 pixel loss, L1 perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method. Numéro de notice : A2022-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3093043 Date de publication en ligne : 12/07/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3093043 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101789
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 3000224[article]A novel unmixing-based hypersharpening method via convolutional neural network / Xiaochen Lu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : A novel unmixing-based hypersharpening method via convolutional neural network Type de document : Article/Communication Auteurs : Xiaochen Lu, Auteur ; Tong Li, Auteur ; Junping Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5503614 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Hypersharpening (namely, hyperspectral (HS) and multispectral (MS) image fusion) aims at enhancing the spatial resolution of HS image via an auxiliary higher resolution MS image. Currently, numerous hypersharpening methods are proposed successively, among which the unmixing-based approaches have been widely researched and demonstrated their effectiveness in the spectral fidelity aspect. However, existing unmixing-based fusion methods substantially employ mathematical techniques to solve the spectral mixture model, without taking full advantage of the collaborative spatial–spectral information that is usually helpful for abundance estimation improvement. To overcome this drawback, in this article, a novel unmixing-based HS and MS image fusion method, via a convolutional neural network (CNN), is proposed to promote spectral fidelity. The main idea of this work is to use CNN to fully explore the spatial information and the spectral information of both HS and MS images simultaneously, thereby enhancing the accuracy of estimating the abundance maps. Experiments on four simulated and real remote sensing data sets demonstrate that the proposed method is beneficial to the spectral fidelity of the fused images compared with some state-of-the-art algorithms. Meanwhile, it is also easy to implement and has a certain advantage in running time. Numéro de notice : A2022-028 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3063105 Date de publication en ligne : 22/03/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3063105 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99264
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 5503614[article]
Titre : Context-aware image super-resolution using deep neural networks Type de document : Thèse/HDR Auteurs : Mohammad Saeed Rad, Auteur ; Jean-Philippe Thiran, Directeur de thèse Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Année de publication : 2021 Importance : 148 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du grade de Docteur ès SciencesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image à basse résolution
[Termes IGN] image à haute résolution
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Image super-resolution is a classic ill-posed computer vision and image processing problem, addressing the question of how to reconstruct a high-resolution image from its low-resolution counterpart. Current state-of-the-art methods have improved the performance of the single image super-resolution task significantly by benefiting from machine learning and AI-powered algorithms, and more specifically, with the advent of Deep Learning-based approaches. Although these advances allow a machine to learn and have better exploitation of an image and its content, recent methods are still unable to constrain the plausible solution space based on the available contextual information within an image. This limitation mostly results in poor reconstructions, even for well-known types of objects and textures easily recognizable for humans. In this thesis, we aim at proving that the categorical prior, which characterizes the semantic class of a region in an image (e.g., sky, building, plant), is crucial in super-resolution task for reaching a higher reconstruction quality. In particular, we propose several approaches to improve the perceived image quality and generalization capability of deep learning-based methods by exploiting the context and semantic meaning of images. To prove the effectiveness of this categorical information, we first propose a convolutional neural network-based framework that is able to extract and use semantic information to super-resolve a given image by using multitask learning, simultaneously for learning image super-resolution and semantic segmentation. The proposed decoder is forced to explore categorical information during training, as this setting employs only one shared deep network for both semantic segmentation and super-resolution tasks. We further investigate the possibility of using semantic information by a novel objective function to introduce additional spatial control over the training process. We propose penalizing images at different semantic levels using appropriate loss terms by benefiting from our new OBB (Object, Background, and Boundary) labels generated from segmentation labels. Then, we introduce a new test time adaptation-based technique to leverage high-resolution images with perceptually similar context to a given test image to improve the reconstruction quality. We further validate this approach's effectiveness by using a novel numerical experiment analyzing the correlation between filters learned by our network and what we define as `ideal' filters. Finally, we present a generic solution to enable adapting all our previous contributions in this thesis, as well as other recent super-resolution works trained on synthetic datasets, to real-world super-resolution problem. Real-world super-resolution refers to super-resolving images with real degradations caused by physical imaging systems, instead of low-resolution images from simulated datasets assuming a simple and uniform degradation model (i.e., bicubic downsampling). We study and develop an image-to-image translator to map the distribution of real low-resolution images to the well-understood distribution of bicubically downsampled images. This translator is used as a plug-in to integrate real inputs into any super-resolution framework trained on simulated datasets. We carry out extensive qualitative and quantitative experiments for each mentioned contribution, including user studies, to compare our proposed approaches to state-of-the-art method. Note de contenu : 1- Introduction
2- Brief image super-resolution review
3- Extracting image context by multi-task learning
4- Spatial control over image genertion process
5- Test-time adaptation based on perceptual similarity
6- Integrating into real-world SR
7- ConclusionNuméro de notice : 28652 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de Doctorat : Sciences : EPFL, Lausanne : 2021 DOI : sans En ligne : https://infoscience.epfl.ch/record/286804?ln=fr Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99790 Model based signal processing techniques for nonconventional optical imaging systems / Daniele Picone (2021)
Titre : Model based signal processing techniques for nonconventional optical imaging systems Type de document : Thèse/HDR Auteurs : Daniele Picone, Auteur ; Mauro Dalla Mura, Directeur de thèse Editeur : Grenoble [France] : Université Grenoble Alpes Année de publication : 2021 Importance : 364 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Grenoble Alpes, spécialité : Signal Image Parole TélécomsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition comprimée
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] inférence statistique
[Termes IGN] interférométrie
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] mosaïque d'images
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] problème inverse
[Termes IGN] reconstruction d'image
[Termes IGN] régression non linéaire
[Termes IGN] spectromètre imageur
[Termes IGN] traitement du signalIndex. décimale : THESE Thèses et HDR Résumé : (auteur) There is an increasing demand for images with higher spectral and spatial resolution for applications in several domains such as health, environment, quality checking and natural disasters monitoring. Hyperspectral imagery provides the necessary spectral diversity to recover the composition of materials on site for applications such as the detection of fires, anomalies, chemical agents, targets and changes in the scene.The requirement for cheaper and more compact devices (e.g. to be embarked on low cost satellites and airborne platform) which are capable of capturing this information has led to the development of nonconventional innovative design concepts to overcome the technological limitations of traditional cameras. Data acquired by such novel imaging devices following the computational imaging paradigm are typically not readily exploitable for the final application. A computational phase is hence needed for extracting useful information from the raw acquisitions.This thesis addresses this issue by setting up an inversion problem. The general approach is to characterize the data fidelity term with a physical model, describing the underlying optical transformations performed by the device. The challenge is then shifted on the regularization step to properly characterizes the features of the quantities of interest and improve the accuracy of the estimation, which can be tackled with variational techniques.The analysis is applied to two novel concepts for nonconventional optical devices. The first one is a novel compressed acquisition imaging system based on color filter arrays, which embeds information from sensors with different spatial and spectral characteristics into a single mosaiced product. As opposed to existing compressed sensing based devices, the goal is not to recover the original uncompressed multiresolution sources, but instead to directly recover a synthetic fused image with both high spatial and spectral resolution.The proposed solution relies on the total variation regularization and is the subject of a detailed analysis, comparing its compressive power with straightforward software alternatives, evaluating its performances as the amount of channels changes, and validating its efficiency in comparison to state of the art methods when applied to classical fusion or mosaicing algorithms separately.The second class of devices is based on the ImSPOC patent, a design concept for a low finesse snapshot imaging spectrometer based on the interferometry of Fabry-Pérot. Its ideal behaviour follows the principle of the Fourier Transform Spectroscopy, as its acquisition can be interpreted as a sampled version of an interferogram, arranged across different sub-images distributed on the same focal plane.After defining a physical model based on optical geometry, its validity is evaluated over real acquisitions by setting up a Bayesian inference problem to determine its parameters, with approaches based on maximum likelihood estimators, regular-grid searches and nonlinear regression.A variety of preliminary tests are then carried out on the inversion method, with approaches based on singular value decomposition and sparse-inducing regularizers, accompanied by a analysis of their robustness to model mismatches. Note de contenu : 1- Introduction
2- Inverse problems theory
3- Signal processing of multimodal data
4- Joint fusion and demosaicing of compressed multiresolution acquisitions
5- Optics foundations for the ImSPOC acquisition system
6- Data processing pipeline of ImSPOC acquisitions
7- ConclusionsNuméro de notice : 28691 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal Image Parole Télécoms : Grenoble : 2021 Organisme de stage : GIPSA-lab DOI : sans En ligne : https://hal.science/tel-03596486v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100170 A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery Type de document : Article/Communication Auteurs : Farzaneh Dadrass Javan, Auteur ; Farhad Samadzadegan, Auteur ; Soroosh Mehravar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 101 - 117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] analyse de variance
[Termes IGN] fusion d'images
[Termes IGN] image Kompsat
[Termes IGN] image à haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Pléiades-HR
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] netteté
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Pan-sharpening methods are commonly used to synthesize multispectral and panchromatic images. Selecting an appropriate algorithm that maintains the spectral and spatial information content of input images is a challenging task. This review paper investigates a wide range of algorithms, including 41 methods. For this purpose, the methods were categorized as Component Substitution (CS-based), Multi-Resolution Analysis (MRA), Variational Optimization-based (VO), and Hybrid and were tested on a collection of 21 case studies. These include images from WorldView-2, 3 & 4, GeoEye-1, QuickBird, IKONOS, KompSat-2, KompSat-3A, TripleSat, Pleiades-1, Pleiades with the aerial platform, and Deimos-2. Neural network-based methods were excluded due to their substantial computational requirements for operational mapping purposes. The methods were evaluated based on four Spectral and three Spatial quality metrics. An Analysis Of Variance (ANOVA) was used to statistically compare the pan-sharpening categories. Results indicate that MRA-based methods performed better in terms of spectral quality, whereas most Hybrid-based methods had the highest spatial quality and CS-based methods had the lowest results both spectrally and spatially. The revisited version of the Additive Wavelet Luminance Proportional Pan-sharpening method had the highest spectral quality, whereas Generalized IHS with Best Trade-off Parameter with Additive Weights showed the highest spatial quality. CS-based methods generally had the fastest run-time, whereas the majority of methods belonging to MRA and VO categories had relatively long run times. Numéro de notice : A2021-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.001 Date de publication en ligne : 21/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96418
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 101 - 117[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An analytic expression for the phase noise of the goldstein–werner filter / Scott Hensley in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)PermalinkSuper-resolution of Sentinel-2 images : Learning a globally applicable deep neural network / Charis Lanaras in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)PermalinkHyperspectral band selection from statistical wavelet models / Siwei Feng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)PermalinkMultiple spectral similarity metrics for surface materials identification using hyperspectral data / Rama Rao Nidamanuri in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)PermalinkOptimising the spatial resolution of WorldView-2 pan-sharpened imagery for predicting levels of Gonipterus scutellatus defoliation in KwaZulu-Natal, South Africa / Romano Lottering in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)PermalinkMultispectral sensor spectral resolution simulations for generation of hyperspectral vegetation indices from Hyperion data / Prabir Das in Geocarto international, vol 30 n° 5 - 6 (May - July 2015)PermalinkKernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features / Z. He in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)PermalinkSpatial and spectral image fusion using sparse matrix factorization / Bo Huang in IEEE Transactions on geoscience and remote sensing, vol 52 n° 3 (March 2014)PermalinkAtmospheric water vapour sensing by means of differential absorption spectrometry using solar and lunar radiation / Stefan Walter Münch (2014)PermalinkThree methods for the absolute calibration of the NOAA AVHRR sensors in-flight / P.M. Teillet in Remote sensing of environment, vol 31 n° 2 (01/02/1990)Permalink