Descripteur
Termes IGN > 1- Outils - instruments et méthodes > document > document géographique > document cartographique > carte > carte thématique > carte agricole > surface cultivée
surface cultivée
Commentaire :
région agricole, région de cultures, surface agricole, terre agricole, territoire agricole, zone agricole, zone agroclimatique. campagne, biome, géographie agricole. >> culture, déprise agricole, utilisation agricole du sol. >>Terme(s) spécifique(s) : agriculture des régions arides, agriculture en montagne. Equiv. LCSH : Crop zones. Domaine(s) : 630. Synonyme(s)zone cultivée ;zone agricole ;Terre cultivée ;Terre agricole ;parcelle cultivée ;espace cultivé ;espace agricole ;champ cultivé zone de culture |
Documents disponibles dans cette catégorie (220)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain / Arabinda Maiti in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Mapping active paddy rice area over monsoon asia using time-series Sentinel-2 images in Google earth engine : a case study over lower gangetic plain Type de document : Article/Communication Auteurs : Arabinda Maiti, Auteur ; Prasenjit Acharya, Auteur ; Srikanta Sannigrahi, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] Gange (fleuve)
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] mousson
[Termes IGN] plaine
[Termes IGN] rizièreRésumé : (auteur) We proposed a modification of the existing approach for mapping active paddy rice fields in monsoon-dominated areas. In the existing PPPM approach, LSWI higher than EVI at the transplantation stage enables the identification of rice fields. However, it fails to recognize the fields submerged later due to monsoon floods. In the proposed approach (IPPPM), the submerged fields, at the maximum greenness time, were excluded for better estimation. Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. Further comparison with the statistical data reveals the IPPPM underestimates (slope (β1) = 0.77) the total reported paddy rice area, though R2 remains close to 0.9. The findings provide a basis for near real-time mapping of active paddy rice areas for addressing the issues of production and food security. Numéro de notice : A2022-924 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2032396 En ligne : https://doi.org/10.1080/10106049.2022.2032396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99963
in Geocarto international > vol 38 n° inconnu [01/01/2023][article]Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
[article]
Titre : Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine Type de document : Article/Communication Auteurs : Luis Carrasco, Auteur ; Go Fujita, Auteur ; Kensuke Kito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 277 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] cartographie historique
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Japon
[Termes IGN] phénologie
[Termes IGN] photographie aérienne
[Termes IGN] réflectance de surface
[Termes IGN] rizière
[Termes IGN] signature spectraleRésumé : (auteur) Mapping the expansion or reduction of rice fields is fundamental for food and water security, greenhouse gas emission accounting, and environmental management. The historical mapping of rice fields with satellite images is challenging because of the limited availability of remote sensing and training data from past decades. The use of phenology-based algorithms has been proposed for mapping rice fields because they can take advantage of rice fields’ characteristic spectral signature during the transplanting phase and do not need training data. However, in order to employ phenology-based algorithms effectively for the historical rice mapping of large areas, we need to incorporate automatized methods able to deal with non-usable data (e.g., cloud cover) and with spatial inconsistencies in the number of available images for each pixel. Here we propose the combination of a pixel-based, phenological algorithm with the temporal aggregation of all available Landsat images to produce national level historical maps of rice fields in Japan from the 1980s onwards. We used temporally aggregated metrics (median, percentiles, etc.), derived from spectral indices of a large number of images within the Google Earth Engine, to minimize the issue of inconsistent image availability and reduce the effects of outliers in phenology-based algorithms. We produced seven rice field maps, for the periods 1985–89, 1990–94, 1995–99, 2000–04, 2005–09, 2010–14, and 2015–19. The overall map accuracies ranged from 83% to 95% when validated with visually interpreted aerial photography. We detected a 23% decrease in the area of rice fields at a country level, although the changes varied greatly among prefectures. Here we present the first freely available historical rice field maps of Japan from the 1980s onwards, together with the source code, and a web application that enables the exploration of the maps and data relating to the derived rice field area changes. The application of temporal aggregation is promising for dealing with the gap-filling of large amounts of satellite data, reducing the issue of data outliers and providing an effective use of the historical Landsat archive for phenology-based crop detection algorithms. Our maps could greatly help researchers, conservationists and policymakers studying the drivers and consequences of rice field changes, and our methods could be extrapolated to map rice fields at large scales in other regions of the world. Numéro de notice : A2022-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.018 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101527
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 277 - 289[article]Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
[article]
Titre : Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression Type de document : Article/Communication Auteurs : Haoyu Wang, Auteur ; Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113088 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de régression
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Global urbanization changes land cover patterns and affects the living environment of humans. However, urbanization and its evolution process, i.e., conversions among diverse land covers, are hard to measure, as existing land cover maps usually have low temporal resolutions; conversely, long-term and temporally dense land cover maps, such as vegetation-impervious-soil decomposition maps base on MODIS, ignore the important land cover of cropland in urban evolution process (UEP). To resolve the issue, this study suggests a novel model named time-extended non-crop vegetation-impervious-cropland (Time V-I-C) to represent and quantify different stages of UEP; then, a normalized multi-objective T-ConvLSTM (NMT) method is proposed to unmix cropland, non-crop vegetation, and impervious based on the intra-annual remotely-sensed time series, and obtain their fractions in each pixel for generating UEP maps. Consequently, UEP maps from 2001 to 2018 are generated for two Chinese urban agglomerations, i.e., Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. The mapping results have high accuracies with a small standard error of regression (SER) of 13.1%, small root mean square error (RMSE) of 12.6%, and small mean absolute error (MAE) of 8.4%, and the maps reveal the different UEP in the two urban agglomerations. Therefore, this study provides a new idea for expressing UEP and contributes to a wide range of urbanization studies and sustainable city development. Numéro de notice : A2022-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.rse.2022.113088 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113088 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101049
in Remote sensing of environment > vol 278 (September 2022) . - n° 113088[article]Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process / Ahmad Al-Hanbali in Geo-spatial Information Science, vol 25 n° 2 ([01/06/2022])
[article]
Titre : Analysis of the land suitability for paddy fields in Tanzania using a GIS-based analytical hierarchy process Type de document : Article/Communication Auteurs : Ahmad Al-Hanbali, Auteur ; Kenichi Shibuta, Auteur ; Bayan Alsaaideh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 212 - 228 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] cultures irriguées
[Termes IGN] humidité du sol
[Termes IGN] précipitation
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] Tanzanie
[Termes IGN] utilisation du solRésumé : (auteur) The importance of irrigation development is considered a key factor for food security and poverty reduction because it improves crop productivity, and ensures stable expansion of agricultural production. However, irrigation development requires understanding of the available resources including the suitability of the land for agriculture. In this study, the land suitability for paddy fields was evaluated within the United Republic of Tanzania mainland by integrating the geographic information system (GIS) and analytical hierarchy process (AHP). In this study, 11 criteria based on various sources (soil type, soil drainage, soil organic carbon, soil pH, soil depth, elevation, slope, land use, topographic wetness index, temperature, and precipitation) were used. These criteria were used within the GIS-based AHP to identify the most suitable land for sustainable paddy field cultivation considering the preservation of the natural environment of forests and protected areas by examining two scenarios: rainfed condition and irrigation priority. The former ten criteria were assumed to be constant in both scenarios and were assigned the same scores, while the latter criterion (precipitation) was assigned different scores for varying amounts to plan new irrigation projects. Unsuitable land represents 72.8% of the study area, reducing the potential agriculture land (PAL) appropriate for cultivation to 27.2%. In the rainfed condition scenario, the very high and high suitability classes represent 17.6% of the total land of the study area and 64.7% of the PAL. In the irrigation priority scenario, the same classes represent 21.4% of the total land of the study area and 78.6% of the PAL. Finally, the distribution of the land suitability for both scenarios was analyzed within eight administrative irrigation zones to determine the irrigation zone with the greatest potential for paddy field cultivation. Numéro de notice : A2022-598 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10095020.2021.2004079 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1080/10095020.2021.2004079 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101303
in Geo-spatial Information Science > vol 25 n° 2 [01/06/2022] . - pp 212 - 228[article]Research on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)PermalinkAlternative procedure to improve the positioning accuracy of orthomosaic images acquired with Agisoft Metashape and DJI P4 multispectral for crop growth observation / Toshihiro Sakamoto in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 5 (May 2022)PermalinkMulti-modal temporal attention models for crop mapping from satellite time series / Vivien Sainte Fare Garnot in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)PermalinkCrop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information / Murali Krishna Gumma in Geocarto international, vol 37 n° 7 ([15/04/2022])PermalinkParcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data / Yanyan Wang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)PermalinkEvaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkSimulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model / Hasan Aksoy in Geocarto international, vol 37 n° 4 ([15/02/2022])PermalinkDynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/02/2022])PermalinkExtensification and afforestation of cultivated mineral soil for climate change mitigation in Finland / Boris Tupek in Forest ecology and management, vol 501 (December-1 2021)PermalinkOBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry / Xuan Fang in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)Permalink