Descripteur
Documents disponibles dans cette catégorie (485)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Mapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image / Salma Benmokhtar in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
[article]
Titre : Mapping and quantification of the dwarf eelgrass Zostera noltii using a random forest algorithm on a SPOT 7 satellite image Type de document : Article/Communication Auteurs : Salma Benmokhtar, Auteur ; Marc Robin, Auteur ; Mohamed Maanan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 313 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse
[Termes IGN] cartographie hydrographique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] fond marin
[Termes IGN] herbier marin
[Termes IGN] image SPOT 7
[Termes IGN] Maroc
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] plante aquatique d'eau salée
[Termes IGN] réflectance spectrale
[Termes IGN] typologie
[Termes IGN] Zostera noltiiRésumé : (auteur) The dwarf eelgrass Zostera noltei Hornemann (Z. noltei) is the most dominant seagrass in semi-enclosed coastal systems of the Atlantic coast of Morocco. The species is experiencing a worldwide decline and monitoring the extent of its meadows would be a useful approach to estimate the impacts of natural and anthropogenic stressors. Here, we aimed to map the Z. noltei meadows in the Merja Zerga coastal lagoon (Atlantic coast of Morocco) using remote sensing. We used a random forest algorithm combined with field data to classify a SPOT 7 satellite image. Despite the difficulties related to the non-synchronization of the satellite images with the high tide coefficient, our results revealed, with an accuracy of 95%, that dwarf eelgrass beds can be discriminated successfully from other habitats in the lagoon. The estimated area was 160.76 ha when considering mixed beds (Z. noltei-associated macroalgae). The use of SPOT 7 satellite images seems to be satisfactory for long-term monitoring of Z. noltei meadows in the Merja Zerga lagoon and for biomass estimation using an NDVI–biomass quantitative relationship. Nevertheless, using this method of biomass estimation for dwarf eelgrass meadows could be unsuccessful when it comes to areas where the NDVI is saturated due to the stacking of many layers. Numéro de notice : A2021-393 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10050313 Date de publication en ligne : 07/05/2021 En ligne : https://doi.org/10.3390/ijgi10050313 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97679
in ISPRS International journal of geo-information > vol 10 n° 5 (May 2021) . - n° 313[article]Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment / Maxime Soma in Remote sensing of environment, vol 257 (May 2021)
[article]
Titre : Sensitivity of voxel-based estimations of leaf area density with terrestrial LiDAR to vegetation structure and sampling limitations: A simulation experiment Type de document : Article/Communication Auteurs : Maxime Soma, Auteur ; François Pimont, Auteur ; Jean-Luc Dupuy, Auteur Année de publication : 2021 Article en page(s) : n° 112354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de sensibilité
[Termes IGN] densité du feuillage
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] Leaf Area Index
[Termes IGN] Leaf Mass per Area
[Termes IGN] semis de points
[Termes IGN] structure de la végétation
[Termes IGN] voxelRésumé : (auteur) The need for fine scale description of vegetation structure is increasing as Leaf Area Density (LAD, m2/m3) becomes a critical parameter to understand ecosystem functioning and energy and mass fluxes in heterogeneous ecosystems. Terrestrial Laser Scanning (TLS) has shown great potential for retrieving the foliage area at stand, plant or voxel scales. Several sources of measurement errors have been identified and corrected over the past years. However, measurements remain sensitive to several factors, including, 1) voxel size and vegetation structure within voxels, 2) heterogeneity in sampling from TLS instrument (occlusion and shooting pattern), the consequences of which have been seldom analyzed at the scale of forest plots. In the present paper, we aimed at disentangling biases and errors in plot-scale measurements of LAD with TLS in a simulated vegetation scene. Two negative biases were formerly attributed to (i) the unsampled voxels and to (ii) the subgrid vegetation heterogeneity (i.e. clumping effect), and then quantified, thanks to a the simulation experiment providing known LAD references at voxel scale, vegetation manipulations and unbiased point estimators. We used confidence intervals to evaluate voxel-scale measurement accuracy. Numéro de notice : A2021-278 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112354 Date de publication en ligne : 18/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112354 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97371
in Remote sensing of environment > vol 257 (May 2021) . - n° 112354[article]Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
[article]
Titre : Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Charlotte Z. Smith, Auteur ; Hiroki Yoshioka, Auteur Année de publication : 2021 Article en page(s) : n° 112344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] image Aqua-MODIS
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance du solRésumé : (auteur) Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous studies have evaluated how well VI products capture variations in vegetation biophysical or physiological conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ reflectance measurements acquired over the 1 km-by−1 km Radiometric Calibration Test Site (RadCaTS) located on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a reference. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with the RadCaTS counterparts and across the three sensors than the satellite EVI. Numéro de notice : A2021-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112344 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97370
in Remote sensing of environment > vol 257 (May 2021) . - n° 112344[article]Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing / Shangharsha Thapa in Remote sensing, vol 13 n° 8 (April-2 2021)
[article]
Titre : Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel-2) remote sensing Type de document : Article/Communication Auteurs : Shangharsha Thapa, Auteur ; Virginia Garcia Millan, Auteur ; Lars Eklundh, Auteur Année de publication : 2021 Article en page(s) : n° 1597 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse multiéchelle
[Termes IGN] capteur multibande
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelle
[Termes IGN] Suède
[Termes IGN] surveillance forestière
[Termes IGN] variation saisonnièreRésumé : (auteur) The monitoring of forest phenology based on observations from near-surface sensors such as Unmanned Aerial Vehicles (UAVs), PhenoCams, and Spectral Reflectance Sensors (SRS) over satellite sensors has recently gained significant attention in the field of remote sensing and vegetation phenology. However, exploring different aspects of forest phenology based on observations from these sensors and drawing comparatives from the time series of vegetation indices (VIs) still remains a challenge. Accordingly, this research explores the potential of near-surface sensors to track the temporal dynamics of phenology, cross-compare their results against satellite observations (MODIS, Sentinel-2), and validate satellite-derived phenology. A time series of Normalized Difference Vegetation Index (NDVI), Green Chromatic Coordinate (GCC), and Normalized Difference of Green & Red (VIgreen) indices were extracted from both near-surface and satellite sensor platforms. The regression analysis between time series of NDVI data from different sensors shows the high Pearson’s correlation coefficients (r > 0.75). Despite the good correlations, there was a remarkable offset and significant differences in slope during green-up and senescence periods. SRS showed the most distinctive NDVI profile and was different to other sensors. PhenoCamGCC tracked green-up of the canopy better than the other indices, with a well-defined start, end, and peak of the season, and was most closely correlated (r > 0.93) with the satellites, while SRS-based VIgreen accounted for the least correlation (r = 0.58) against Sentinel-2. Phenophase transition dates were estimated and validated against visual inspection of the PhenoCam data. The Start of Spring (SOS) and End of Spring (EOS) could be predicted with an accuracy of Numéro de notice : A2021-382 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13081597 Date de publication en ligne : 20/04/2021 En ligne : https://doi.org/10.3390/rs13081597 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97633
in Remote sensing > vol 13 n° 8 (April-2 2021) . - n° 1597[article]Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([15/04/2021])
[article]
Titre : Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data Type de document : Article/Communication Auteurs : Vijay Pratap Yadav, Auteur ; Rajendra Prasad, Auteur ; Ruchi Bala, Auteur Année de publication : 2021 Article en page(s) : pp 791 - 802 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] blé (céréale)
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Inde
[Termes IGN] Leaf Area Index
[Termes IGN] polarisation
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) The time-series synthetic aperture radar (SAR) and optical satellite data were used for the leaf area index (LAI) estimation of wheat crop using modified water cloud model (MWCM) in Varanasi district, India. In this study, MWCM was developed by including scale invariant vegetation fraction (fveg) in the old WCM for the estimation of LAI. The non-linear least square optimization technique was applied to determine the optimum model parameters for the retrieval of LAI which was further validated with the observed LAI. The estimated values of LAI by MWCM at VV polarization shows good correspondence (R2 = 0.901 and RMSE = 0.456 m2/m2) with the observed LAI values than at VH polarization (R2 = 0.742 and RMSE = 0.521 m2/m2).The MWCM shows great potential for the LAI estimation of wheat crop by incorporating optical data (i.e. Sentinel-2) in terms of fveg with SAR data (i.e. Sentinel-1A). Numéro de notice : A2021-294 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624984 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624984 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97352
in Geocarto international > vol 36 n° 7 [15/04/2021] . - pp 791 - 802[article]The delineation of tea gardens from high resolution digital orthoimages using mean-shift and supervised machine learning methods / Akhtar Jamil in Geocarto international, vol 36 n° 7 ([15/04/2021])PermalinkTemporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)PermalinkApport des images Landsat à l’étude de l’évolution de l’occupation du sol dans la plaine de Saïss au Maroc, pour la période 1987-2018 / Abdelkader El Garouani in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkDétection des zones de dégradation et de régénération de la couverture végétale dans le sud du Sénégal à travers l'analyse des tendances de séries temporelles MODIS NDVI et des changements d'occupation des sols à partir d'images LANDSAT / Boubacar Solly in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkEvaluation du potentiel des series d’images multi-temporelles optique et radar des satellites Sentinel 1 & 2 pour le suivi d’une zone côtière en contexte tropical: cas de l’estuaire du Cameroun pour la période 2015-2020 / Nourdi Njutapvoui in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)PermalinkA soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])PermalinkImpact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)PermalinkIs the seasonal variation in frost resistance and plant performance in four oak species affected by changing temperatures? / Maggie Preißer in Forests, vol 12 n° 3 (March 2021)PermalinkCrop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)Permalink