Descripteur
Documents disponibles dans cette catégorie (178)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Geographically masking addresses to study COVID-19 clusters / Walid Houfaf-Khoufaf in Cartography and Geographic Information Science, vol inconnu (2023)
[article]
Titre : Geographically masking addresses to study COVID-19 clusters Type de document : Article/Communication Auteurs : Walid Houfaf-Khoufaf, Auteur ; Guillaume Touya , Auteur Année de publication : 2023 Projets : 1-Pas de projet / Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] adresse postale
[Termes IGN] anonymisation
[Termes IGN] carte sanitaire
[Termes IGN] classification barycentrique
[Termes IGN] surveillance sanitaire
[Termes IGN] traitement de données localiséesRésumé : (auteur) The spatio-temporal analysis of cases is a good way an epidemic, and the recent COVID-19 pandemic unfortunately generated a huge amount of data. But analysing this raw data, with for instance the address of the people who contracted COVID-19, raises some privacy issues, and geomasking is necessary to preserve both people privacy and the spatial accuracy required for analysis. This paper proposes dierent geomasking techniques adapted to this COVID-19 data. Methods: Different techniques are adapted from the literature, and tested on a synthetic dataset mimicking the COVID-19 spatio-temporal spreading in Paris and a more rural nearby region. Theses techniques are assessed in terms of k-anonymity and cluster preservation. Results: Three adapted geomasking techniques are proposed: aggregation, bimodal gaussian perturbation, and simulated crowding. All three can be useful in different use cases, but the bimodal gaussian perturbation is the overall best techniques, and the simulated crowding is the most promising one, provided some improvements are introduced to avoid points with a low k-anonymity. Conclusions: It is possible to use geomasking techniques on addresses of people who caught COVID-19, while preserving the important spatial patterns. Numéro de notice : A2023-084 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers RSquare Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.1977709 Date de publication en ligne : 08/10/2021 En ligne : https://doi.org/10.1080/15230406.2021.1977709 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96857
in Cartography and Geographic Information Science > vol inconnu (2023)[article]Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China / Liangting Zheng in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus disease 2019 in Yunnan Province, China Type de document : Article/Communication Auteurs : Liangting Zheng, Auteur ; Jia Li, Auteur ; Wenying Hu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6519 - 6537 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] diagramme de Voronoï
[Termes IGN] données médicales
[Termes IGN] données routières
[Termes IGN] épidémie
[Termes IGN] interpolation inversement proportionnelle à la distance
[Termes IGN] interpolation par pondération de zones
[Termes IGN] maladie virale
[Termes IGN] médecine humaine
[Termes IGN] secours d'urgence
[Termes IGN] Yunnan (Chine)Résumé : (auteur) COVID-19 poses a major threat to global health care systems, and the recent surge in mortality rates confirms the importance of timely access to care. The capacity of medical service providers is reflected both in the spatial accessibility of medical institutions and in the spatial scope of their services. Therefore, this study aims to investigate the spatial scope of services and spatial accessibility of COVID-19-designated hospitals in Yunnan Province, China. Data are collected from multiple sources and included COVID-19 case data, road data, and data from designated hospitals for COVID-19 in Yunnan Province. The optimal spatial service range for designated hospitals is delineated using a weighted Voronoi diagram that takes into account the number of medical staff and the number of beds in the hospital. Traffic accessibility coefficients are introduced to analyze the spatial accessibility of COVID-19-designated hospitals, and the spatial accessibility of each designated hospital is visualized using the inverse distance weighting interpolation algorithm. The results show the following: (1) COVID-19 cases in Yunnan Province are concentrated in the central and northern regions. The largest single cells in the weighted Voronoi diagram are mainly Pu'er (59168 km2), Honghe (35569 km2), and Baoshan (46795 km2), and the time cost of attainting medical treatment is greater for residents in marginal areas. (2) Within the service space of designated hospitals, 90.24% of patients could obtain medical assistance within 2 h. Those in 52 (36.36%) counties within a municipal jurisdiction could obtain medical services within 2 h, and 76.47% of counties have above-average spatial accessibility. (3) Medical resources in Yunnan Province should be shifted toward the high-risk east-central region and the less spatially accessible in southern and western regions. Numéro de notice : A2022-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943008 Date de publication en ligne : 09/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101674
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6519 - 6537[article]Early warning of COVID-19 hotspots using human mobility and web search query data / Takahiro Yabe in Computers, Environment and Urban Systems, vol 92 (March 2022)
[article]
Titre : Early warning of COVID-19 hotspots using human mobility and web search query data Type de document : Article/Communication Auteurs : Takahiro Yabe, Auteur ; Kota Tsubouchi, Auteur ; Yoshihide Sekimoto, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101747 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aide à la localisation
[Termes IGN] analyse de données
[Termes IGN] analyse de groupement
[Termes IGN] épidémie
[Termes IGN] exploration de données
[Termes IGN] maladie virale
[Termes IGN] mobilité urbaine
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] requête spatiale
[Termes IGN] ressources web
[Termes IGN] surveillance sanitaire
[Termes IGN] Tokyo (Japon)Résumé : (auteur) COVID-19 has disrupted the global economy and well-being of people at an unprecedented scale and magnitude. To contain the disease, an effective early warning system that predicts the locations of outbreaks is of crucial importance. Studies have shown the effectiveness of using large-scale mobility data to monitor the impacts of non-pharmaceutical interventions (e.g., lockdowns) through population density analysis. However, predicting the locations of potential outbreak occurrence is difficult using mobility data alone. Meanwhile, web search queries have been shown to be good predictors of the disease spread. In this study, we utilize a unique dataset of human mobility trajectories (GPS traces) and web search queries with common user identifiers (> 450 K users), to predict COVID-19 hotspot locations beforehand. More specifically, web search query analysis is conducted to identify users with high risk of COVID-19 contraction, and social contact analysis was further performed on the mobility patterns of these users to quantify the risk of an outbreak. Our approach is empirically tested using data collected from users in Tokyo, Japan. We show that by integrating COVID-19 related web search query analytics with social contact networks, we are able to predict COVID-19 hotspot locations 1–2 weeks beforehand, compared to just using social contact indexes or web search data analysis. This study proposes a novel method that can be used in early warning systems for disease outbreak hotspots, which can assist government agencies to prepare effective strategies to prevent further disease spread. Human mobility data and web search query data linked with common IDs are used to predict COVID-19 outbreaks. High risk social contact index captures both the contact density and COVID-19 contraction risks of individuals. Real world data was collected from 200 K individual users in Tokyo during the COVID-19 pandemic. Experiments showed that the index can be used for microscopic outbreak early warning. Numéro de notice : A2022-114 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101747 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101747 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99637
in Computers, Environment and Urban Systems > vol 92 (March 2022) . - n° 101747[article]Mapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data / Sébastien Dujardin in Landscape and Urban Planning, vol 218 (February 2022)
[article]
Titre : Mapping abundance distributions of allergenic tree species in urbanized landscapes: A nation-wide study for Belgium using forest inventory and citizen science data Type de document : Article/Communication Auteurs : Sébastien Dujardin, Auteur ; Michiel Stas, Auteur ; Camille Van Eupen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Alnus (genre)
[Termes IGN] Belgique
[Termes IGN] Betula (genre)
[Termes IGN] carte de la végétation
[Termes IGN] carte forestière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Corylus (genre)
[Termes IGN] distribution spatiale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] milieu urbain
[Termes IGN] modèle mathématique
[Termes IGN] régression
[Termes IGN] santé
[Termes IGN] science citoyenne
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Mapping the distribution of allergenic plants in urbanized landscapes is of high importance to evaluate its impact on human health. However, data is not always available for the allergy-relevant species such as alder, birch, hazel, especially within cities where systematic inventories are often missing or not readily available. This research presents an approach to produce high-resolution abundance maps of allergenic tree species using existing forest inventories and opportunistic open-access citizen science data. Following a two-step approach, we first built species distribution models (SDMs) to predict species habitat suitability, using environmental characteristics as predictors. Second, we used statistical regressions to model the relationships between abundance, the habitat suitability predicted by the SDMs, and additional vegetation cover covariates. The combination of forest inventory data with citizen science data improves the accuracy of abundance distribution models of allergenic tree species. This produces a continuous, 1-hectare resolution map of alder, birch, and hazel showing spatial variations of abundance distributions both within the urban fabric and along the urban–rural gradient. Species abundance modelling can offer a better understanding of the existing and potential future allergy risk posed by green spaces and pave the way for a wide variety of applications at fine-scale, which is indispensable for evidence-based urban green space policy and planning in support of public health. Numéro de notice : A2022-248 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.1016/j.landurbplan.2021.104286 Date de publication en ligne : 31/10/2021 En ligne : https://doi.org/10.1016/j.landurbplan.2021.104286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100196
in Landscape and Urban Planning > vol 218 (February 2022) . - n° 104286[article]Application of machine learning to predict transport modes from GPS, accelerometer, and heart rate data / Santosh Giri in International Journal of Health Geographics, vol 21 (2022)
[article]
Titre : Application of machine learning to predict transport modes from GPS, accelerometer, and heart rate data Type de document : Article/Communication Auteurs : Santosh Giri, Auteur ; Ruben Brondeel, Auteur ; Tarik El Aarbaoui, Auteur ; Basile Chaix, Auteur Année de publication : 2022 Article en page(s) : n° 19 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accéléromètre
[Termes IGN] bicyclette
[Termes IGN] données GPS
[Termes IGN] données médicales
[Termes IGN] Ile-de-France
[Termes IGN] transport publicRésumé : (auteur) Background : There has been an increased focus on active transport, but the measurement of active transport is still difficult and error-prone. Sensor data have been used to predict active transport. While heart rate data have very rarely been considered before, this study used random forests (RF) to predict transport modes using Global Positioning System (GPS), accelerometer, and heart rate data and paid attention to methodological issues related to the prediction strategy and post-processing.
Methods : The RECORD MultiSensor study collected GPS, accelerometer, and heart rate data over seven days from 126 participants living in the Ile-de-France region. RF models were built to predict transport modes for every minute (ground truth information on modes is from a GPS-based mobility survey), splitting observations between a Training dataset and a Test dataset at the participant level instead at the minute level. Moreover, several window sizes were tested for the post-processing moving average of the predicted transport mode.
Results : The minute-level prediction rate of being on trips vs. at a visited location was 90%. Final prediction rates of transport modes ranged from 65% for public transport to 95% for biking. Using minute-level observations from the same participants in the Training and Test sets (as RF spontaneously does) upwardly biases prediction rates. The inclusion of heart rate data improved prediction rates only for biking. A 3 to 5-min bandwidth moving average was optimum for a posteriori homogenization.
Conclusion : Heart rate only very slightly contributed to better predictions for specific transport modes. Moreover, our study shows that Training and Test sets must be carefully defined in RF models and that post-processing with carefully chosen moving average windows can improve predictions.Numéro de notice : A2022-077 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1186/s12942-022-00319-y Date de publication en ligne : 16/11/2022 En ligne : https://doi.org/10.1186/s12942-022-00319-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102445
in International Journal of Health Geographics > vol 21 (2022) . - n° 19[article]Geospatial assessment of urban ecosystem disservices: An example of poisonous urban trees in Berlin, Germany / Peer von Döhren in Urban Forestry & Urban Greening, vol 67 (January 2022)PermalinkPermalinkUnderstanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models / Tong Zhang in Transactions in GIS, vol 25 n° 6 (December 2021)PermalinkLes journées de la Recherche IGN 2021 / Anonyme in Géomatique expert, n° 135 (septembre 2021)PermalinkConstructing and analyzing spatial-social networks from location-based social media data / Xuebin Wei in Cartography and Geographic Information Science, vol 48 n° 3 (May 2021)PermalinkCrowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping / Marta Samulowska in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)PermalinkGeo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])PermalinkLocal fuzzy geographically weighted clustering: a new method for geodemographic segmentation / George Grekousis in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)PermalinkMise en place d’une infrastructure de données spatiales sur le risque de piqures de tiques / Lilian Calas (2021)PermalinkRadio base stations and electromagnetic fields: GIS applications and models for identifying possible risk factors and areas exposed. Some exemplifications in Rome / Cristiano Pesaresi in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)Permalink