Descripteur
Termes IGN > imagerie > image numérique
image numériqueSynonyme(s)image en mode mailléVoir aussi |
Documents disponibles dans cette catégorie (2417)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors / Nikola Santrač in Geodetski vestnik, vol 67 n° 4 (December 2023)
[article]
Titre : Accuracy analysis of UAV photogrammetry using RGB and multispectral sensors Type de document : Article/Communication Auteurs : Nikola Santrač, Auteur ; Pavel Benka, Auteur ; Mehmed Batilović, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 459 - 472 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image RVB
[Termes IGN] modèle géométrique de prise de vue
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité des donnéesRésumé : (auteur) In recent years, unmanned aerial vehicles (UAVs) have become increasingly important as a tool for quickly collecting high-resolution (spatial and spectral) imagery of the Earth's surface. The final products are highly dependent on the choice of values for various parameters in flight planning, the type of sensors, and the processing of the data. In this paper ground control points (GCPs) were first measured using the Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) method, and then due to the low height accuracy of the GNSS RTK method all points were measured using a detailed leveling method. This study aims to provide a basic assessment of quality, including four main aspects: (1) the difference between an RGB sensor and a five-band multispectral sensor on accuracy and the amount of data, (2) the impact of the number of GCPs on the accuracy of the final products, (3) the impact of different altitudes and cross flight strips, and (4) the accuracy analysis of multi-altitude models. The results suggest that the type of sensor, flight configuration, and GCP setup strongly affect the quality and quantity of the final product data while creating a multi-altitude model does not result in the expected quality of data. With its unique combination of sensors and parameters, the results and recommendations presented in this paper can assist professionals and researchers in their future work. Numéro de notice : A2023-241 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.459-472 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.459-472 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103604
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 459 - 472[article]Deblurring low-light images with events / Chu Zhou in International journal of computer vision, vol 131 n° 5 (May 2023)
[article]
Titre : Deblurring low-light images with events Type de document : Article/Communication Auteurs : Chu Zhou, Auteur ; Minggui Teng, Auteur ; Jin Han, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1284 - 1298 Note générale : bilbiographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] caméra d'événement
[Termes IGN] correction d'image
[Termes IGN] filtrage du bruit
[Termes IGN] flou
[Termes IGN] image à basse résolution
[Termes IGN] image RVBRésumé : (auteur) Modern image-based deblurring methods usually show degenerate performance in low-light conditions since the images often contain most of the poorly visible dark regions and a few saturated bright regions, making the amount of effective features that can be extracted for deblurring limited. In contrast, event cameras can trigger events with a very high dynamic range and low latency, which hardly suffer from saturation and naturally encode dense temporal information about motion. However, in low-light conditions existing event-based deblurring methods would become less robust since the events triggered in dark regions are often severely contaminated by noise, leading to inaccurate reconstruction of the corresponding intensity values. Besides, since they directly adopt the event-based double integral model to perform pixel-wise reconstruction, they can only handle low-resolution grayscale active pixel sensor images provided by the DAVIS camera, which cannot meet the requirement of daily photography. In this paper, to apply events to deblurring low-light images robustly, we propose a unified two-stage framework along with a motion-aware neural network tailored to it, reconstructing the sharp image under the guidance of high-fidelity motion clues extracted from events. Besides, we build an RGB-DAVIS hybrid camera system to demonstrate that our method has the ability to deblur high-resolution RGB images due to the natural advantages of our two-stage framework. Experimental results show our method achieves state-of-the-art performance on both synthetic and real-world images. Numéro de notice : A2023-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-023-01754-5 Date de publication en ligne : 06/02/2023 En ligne : https://doi.org/10.1007/s11263-023-01754-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103062
in International journal of computer vision > vol 131 n° 5 (May 2023) . - pp 1284 - 1298[article]Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times / Peng Wang in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
[article]
Titre : Multiresolution analysis pansharpening based on variation factor for multispectral and panchromatic images from different times Type de document : Article/Communication Auteurs : Peng Wang, Auteur ; Hongyu Yao, Auteur ; Bo Huang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5401217 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] données multitemporelles
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométriqueRésumé : (auteur) Most pansharpening methods refer to the fusion of the original low-resolution multispectral (MS) and high-resolution panchromatic (PAN) images acquired simultaneously over the same area. Due to its good robustness, multiresolution analysis (MRA) has become one of the important categories of pansharpening methods. However, when only MS and PAN images acquired at different times can be provided, the fusion results from current MRA methods are often not ideal due to the failure to effectively analyze multitemporal misalignments between MS and PAN images from different times. To solve this issue, MRA pansharpening based on variation factor for MS and PAN images from different times is proposed. The MRA pansharpening based on dual-scale regression model is first established, and the variation factor is then introduced to effectively analyze the multitemporal misalignments by using the alternating direction method of multipliers (ADMM), yielding the final fusion results. Experiments with synthetic and real datasets show that the proposed method exhibits significant performance improvement compared to the traditional pansharpening methods, as well as the state-of-the-art MRA methods. Visual comparisons demonstrate that the variation factor introduces encouraging improvements in the compensation of multitemporal misalignments in ground objects and advances pansharpening applications for MS and PAN images acquired at different times. Numéro de notice : A2023-184 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3252001 En ligne : https://doi.org/10.1109/TGRS.2023.3252001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102956
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5401217[article]A unified attention paradigm for hyperspectral image classification / Qian Liu in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
[article]
Titre : A unified attention paradigm for hyperspectral image classification Type de document : Article/Communication Auteurs : Qian Liu, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5506316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] précision de la classification
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Attention mechanisms improve the classification accuracies by enhancing the salient information for hyperspectral images (HSIs). However, existing HSI attention models are driven by advanced achievements of computer vision, which are not able to fully exploit the spectral–spatial structure prior of HSIs and effectively refine features from a global perspective. In this article, we propose a unified attention paradigm (UAP) that defines the attention mechanism as a general three-stage process including optimizing feature representations, strengthening information interaction, and emphasizing meaningful information. Meanwhile, we designed a novel efficient spectral–spatial attention module (ESSAM) under this paradigm, which adaptively adjusts feature responses along the spectral and spatial dimensions at an extremely low parameter cost. Specifically, we construct a parameter-free spectral attention block that employs multiscale structured encodings and similarity calculations to perform global cross-channel interactions, and a memory-enhanced spatial attention block that captures key semantics of images stored in a learnable memory unit and models global spatial relationship by constructing semantic-to-pixel dependencies. ESSAM takes full account of the spatial distribution and low-dimensional characteristics of HSIs, with better interpretability and lower complexity. We develop a dense convolutional network based on efficient spectral–spatial attention network (ESSAN) and experiment on three real hyperspectral datasets. The experimental results demonstrate that the proposed ESSAM brings higher accuracy improvement compared to advanced attention models. Numéro de notice : A2023-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3257321 Date de publication en ligne : 15/12/2023 En ligne : https://doi.org/10.1109/TGRS.2023.3257321 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102957
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5506316[article]A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)PermalinkLarge-scale burn severity mapping in multispectral imagery using deep semantic segmentation models / Xikun Hu in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)PermalinkPSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)PermalinkPermalinkDetection of growth change of young forest based on UAV RGB images at single-tree level / Xiaocheng Zhou in Forests, vol 14 n° 1 (January 2023)PermalinkGeneration of high-resolution orthomosaics from historical aerial photographs using Structure-from-motion and Lidar data / Ji Won Suh in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)PermalinkA geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)PermalinkGeospatial-based machine learning techniques for land use and land cover mapping using a high-resolution unmanned aerial vehicle image / Taposh Mollick in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)PermalinkImproving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)PermalinkInvestigating the impact of pan sharpening on the accuracy of land cover mapping in Landsat OLI imagery / Komeil Rokni in Geodesy and cartography, vol 49 n° 1 (January 2023)PermalinkPermalinkA method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])PermalinkMulti-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])PermalinkPSMNet-FusionX3 : LiDAR-guided deep learning stereo dense matching on aerial images / Teng Wu (2023)PermalinkRemote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)PermalinkTree species classification in a typical natural secondary forest using UAV-borne LiDAR and hyperspectral data / Ying Quan in GIScience and remote sensing, vol 60 n° 1 (2023)PermalinkAbove ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)PermalinkAutomatic registration method of multi-source point clouds based on building facades matching in urban scenes / Yumin Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)PermalinkAutomatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)Permalink