Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > modèle stochastique > modèle graphique > champ aléatoire de Markov
champ aléatoire de MarkovSynonyme(s)MrfVoir aussi |
Documents disponibles dans cette catégorie (89)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity / Yuhao Kang in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
[article]
Titre : STICC: a multivariate spatial clustering method for repeated geographic pattern discovery with consideration of spatial contiguity Type de document : Article/Communication Auteurs : Yuhao Kang, Auteur ; Kunlin Wu, Auteur ; Song Gao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1518 - 1549 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse multivariée
[Termes IGN] champ aléatoire de Markov
[Termes IGN] distribution spatiale
[Termes IGN] matrice de covariance
[Termes IGN] matrice de Toeplitz
[Termes IGN] motif séquentiel
[Termes IGN] régionalisation (segmentation)Résumé : (auteur) Spatial clustering has been widely used for spatial data mining and knowledge discovery. An ideal multivariate spatial clustering should consider both spatial contiguity and aspatial attributes. Existing spatial clustering approaches may face challenges for discovering repeated geographic patterns with spatial contiguity maintained. In this paper, we propose a Spatial Toeplitz Inverse Covariance-Based Clustering (STICC) method that considers both attributes and spatial relationships of geographic objects for multivariate spatial clustering. A subregion is created for each geographic object serving as the basic unit when performing clustering. A Markov random field is then constructed to characterize the attribute dependencies of subregions. Using a spatial consistency strategy, nearby objects are encouraged to belong to the same cluster. To test the performance of the proposed STICC algorithm, we apply it in two use cases. The comparison results with several baseline methods show that the STICC outperforms others significantly in terms of adjusted rand index and macro-F1 score. Join count statistics is also calculated and shows that the spatial contiguity is well preserved by STICC. Such a spatial clustering method may benefit various applications in the fields of geography, remote sensing, transportation, and urban planning, etc. Numéro de notice : A2022-591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2053980 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2053980 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101282
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1518 - 1549[article]Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images / Chen Zheng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Chen Zheng, Auteur ; Yun Zhang, Auteur ; Leiguang Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10555 - 10574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] granularité d'image
[Termes IGN] segmentation sémantique
[Termes IGN] texture d'imageRésumé : (auteur) Semantic segmentation is one of the most important tasks in remote sensing. However, as spatial resolution increases, distinguishing the homogeneity of each land class and the heterogeneity between different land classes are challenging. The Markov random field model (MRF) is a widely used method for semantic segmentation due to its effective spatial context description. To improve segmentation accuracy, some MRF-based methods extract more image information by constructing the probability graph with pixel or object granularity units, and some other methods interpret the image from different semantic perspectives by building multilayer semantic classes. However, these MRF-based methods fail to capture the relationship between different granularity features extracted from the image and hierarchical semantic classes that need to be interpreted. In this article, a new MRF-based method is proposed to incorporate the multigranularity information and the multilayer semantic classes together for semantic segmentation of remote sensing images. The proposed method develops a framework that builds a hybrid probability graph on both pixel and object granularities and defines a multiclass-layer label field with hierarchical semantic over the hybrid probability graph. A generative alternating granularity inference is suggested to provide the result by iteratively passing and updating information between different granularities and hierarchical semantics. The proposed method is tested on texture images, different remote sensing images obtained by the SPOT5, Gaofen-2, GeoEye, and aerial sensors, and Pavia University hyperspectral image. Experiments demonstrate that the proposed method shows a better segmentation performance than other state-of-the-art methods. Numéro de notice : A2021-873 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3033293 Date de publication en ligne : 11/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3033293 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99132
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10555 - 10574[article]The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) Type de document : Article/Communication Auteurs : Muhammad Amir Siddique, Auteur ; Yu Wang, Auteur ; Ninghan Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] champ aléatoire de Markov
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification et arbre de régression
[Termes IGN] coefficient de corrélation
[Termes IGN] écosystème urbain
[Termes IGN] flore urbaine
[Termes IGN] ilot thermique urbain
[Termes IGN] modèle de simulation
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] série temporelle
[Termes IGN] température au sol
[Termes IGN] urbanisationRésumé : (auteur) The rapid increase in infrastructural development in populated areas has had numerous adverse impacts. The rise in land surface temperature (LST) and its associated damage to urban ecological systems result from urban development. Understanding the current and future LST phenomenon and its relationship to landscape composition and land use/cover (LUC) changes is critical to developing policies to mitigate the disastrous impacts of urban heat islands (UHIs) on urban ecosystems. Using remote sensing and GIS data, this study assessed the multi-scale relationship of LUCC and LST of the cosmopolitan exponentially growing area of Beijing, China. We investigated the impacts of LUC on LST in urban agglomeration for a time series (2004–2019) of Landsat data using Classification and Regression Trees (CART) and a single channel algorithm (SCA), respectively. We built a CA–Markov model to forecast future (2025 and 2050) LUCC and LST spatial patterns. Our results indicate that the cumulative changes in an urban area (UA) increased by about 908.15 km2 (5%), and 11% of vegetation area (VA) decreased from 2004 to 2019. The correlation coefficient of LUCC including vegetation, water bodies, and built-up areas with LST had values of r = −0.155 (p > 0.419), −0.809 (p = 0.000), and 0.526 (p = 0.003), respectively. The results surrounding future forecasts revealed an estimated 2309.55 km2 (14%) decrease in vegetation (urban and forest), while an expansion of 1194.78 km2 (8%) was predicted for a built-up area from 2019 to 2050. This decrease in vegetation cover and expansion of settlements would likely cause a rise of about ~5.74 °C to ~9.66 °C in temperature. These findings strongly support the hypothesis that LST is directly related to the vegetation index. In conclusion, the estimated overall increase of 7.5 °C in LST was predicted from 2019–2050, which is alarming for the urban community’s environmental health. The present results provide insight into sustainable environmental development through effective urban planning of Beijing and other urban hotspots. Numéro de notice : A2021-860 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13224697 Date de publication en ligne : 20/11/2021 En ligne : https://doi.org/10.3390/rs13224697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99074
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4697[article]Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)PermalinkStructure-aware indoor scene reconstruction via two levels of abstraction / Hao Fang in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkVectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization / Jiali Han in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)PermalinkUncertainty management for robust probabilistic change detection from multi-temporal Geoeye-1 imagery / Mahmoud Salah in Applied geomatics, vol 13 n° 2 (June 2021)PermalinkPermalinkPermalinkA fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)PermalinkRegion level SAR image classification using deep features and spatial constraints / Anjun Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 163 (May 2020)PermalinkAddressing overfitting on point cloud classification using Atrous XCRF / Hasan Asy’ari Arief in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)PermalinkStructural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)Permalink