Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Etats-Unis > Illinois (Etats-Unis)
Illinois (Etats-Unis) |
Documents disponibles dans cette catégorie (16)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Discovering co-location patterns in multivariate spatial flow data / Jiannan Cai in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
[article]
Titre : Discovering co-location patterns in multivariate spatial flow data Type de document : Article/Communication Auteurs : Jiannan Cai, Auteur ; Mei-Po Kwan, Auteur Année de publication : 2022 Article en page(s) : pp 720 - 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] analyse univariée
[Termes IGN] autocorrélation spatiale
[Termes IGN] Chicago (Illinois)
[Termes IGN] co-positionnement
[Termes IGN] données de flux
[Termes IGN] données socio-économiques
[Termes IGN] dynamique spatiale
[Termes IGN] enquête
[Termes IGN] exploration de données géographiques
[Termes IGN] migration pendulaire
[Termes IGN] origine - destination
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial flow co-location patterns (FCLPs) are important for understanding the spatial dynamics and associations of movements. However, conventional point-based co-location pattern discovery methods ignore spatial movements between locations and thus may generate erroneous findings when applied to spatial flows. Despite recent advances, there is still a lack of methods for analyzing multivariate flows. To bridge the gap, this paper formulates a novel problem of FCLP discovery and presents an effective detection method based on frequent-pattern mining and spatial statistics. We first define a flow co-location index to quantify the co-location frequency of different features in flow neighborhoods, and then employ a bottom-up method to discover all frequent FCLPs. To further establish the statistical significance of the results, we develop a flow pattern reconstruction method to model the benchmark null hypothesis of independence conditioning on univariate flow characteristics (e.g. flow autocorrelation). Synthetic experiments with predefined FCLPs verify the advantages of our method in terms of correctness over available alternatives. A case study using individual home-work commuting flow data in the Chicago Metropolitan Area demonstrates that residence- or workplace-based co-location patterns tend to overestimate the co-location frequency of people with different occupations and could lead to inconsistent results. Numéro de notice : A2022-256 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1980217 Date de publication en ligne : 20/09/2021 En ligne : https://doi.org/10.1080/13658816.2021.1980217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100229
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 720 - 748[article]Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 / Mbongowo J. Mbuh in Geocarto international, vol 36 n° 14 ([01/08/2021])
[article]
Titre : Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 Type de document : Article/Communication Auteurs : Mbongowo J. Mbuh, Auteur ; Ryan Wheeler, Auteur ; Amanda Cook, Auteur Année de publication : 2021 Article en page(s) : pp 1565 - 1590 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chicago (Illinois)
[Termes IGN] données spatiotemporelles
[Termes IGN] emissivité
[Termes IGN] exitance spectrale
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image thermique
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelle
[Termes IGN] température au solRésumé : (auteur) Most major cities worldwide are affected Urban Heat Islands – a condition of relatively higher temperatures being observed in one area compared to another that can be caused by a decrease in greenspace. One of the major reasons attributed to this increase in the warming of urban landscapes is the decrease in green space. This concept has received a lot of attention due to the destruction of vegetation for urban development and has prompted long-term spatial-temporal studies of Urban Heat Islands to understanding local climates. The objective of this study is to use Landsat data to examine the temporal intensification of UHIs and their variability from 1984–2016 for the cities of Chicago and Minneapolis-St. Paul. Landsat L4-5 TM), L7 ETM+), OLI and TIRS from 1984 to 2016 was used to examine land surface temperature (LST). Firstly, we converted the digital number (DN) to spectral radiance (L) and to temperature in Kelvin and from kelvin to Celsius and a conversion from Radiance to Top of the Atmosphere Reflectance and estimation of land surface emissivity. Finally, LST was estimated and Urban Heat Island retrieval and anomalies computed to help examine inconsistencies in our data. Our analysis showed year-to-year fluctuations in surface temperature, intensification of UHIs for both metro areas. Using a defined deductive index to identify environmentally critical areas, estimates of UHIs based on LST showed that both metropolitan areas are UHIs with LST > µ + 0.5 × δ. Higher intensification values were observed in 1988 and 2010 for Chicago and 1984, 1999 and 2016 for Minneapolis-St. Paul from analysis. While both areas have the similar climatic conditions, our analysis show differences in UHIs intensification as observed in their urban growth patterns. Chicago experiences a higher UHI intensity compared to Minneapolis-St. Paul and this could be explained by higher number of tall buildings than Minneapolis-St. Paul. Numéro de notice : A2021-556 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1655802 Date de publication en ligne : 29/08/2019 En ligne : https://doi.org/10.1080/10106049.2019.1655802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98109
in Geocarto international > vol 36 n° 14 [01/08/2021] . - pp 1565 - 1590[article]Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images Type de document : Article/Communication Auteurs : Cheolhee Yoo, Auteur ; Daehyeon Han, Auteur ; Jungho Im, Auteur ; Benjamin Bechtel, Auteur Année de publication : 2019 Article en page(s) : pp 155 - 170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] Chicago (Illinois)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] climat urbain
[Termes IGN] Hong-Kong
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] Madrid (Espagne)
[Termes IGN] Rome
[Termes IGN] World Urban Database and Access Portal Tools
[Termes IGN] zone urbaine denseRésumé : (Auteur) The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning. Numéro de notice : A2019-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.009 Date de publication en ligne : 19/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93728
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 155 - 170[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery / Zewei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery Type de document : Article/Communication Auteurs : Zewei Xu, Auteur ; Kaiyu Guan, Auteur ; Nathan Casler, Auteur ; Bin Peng, Auteur ; Shaowen Wang, Auteur Année de publication : 2018 Article en page(s) : pp 423 - 434 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Illinois (Etats-Unis)
[Termes IGN] image Landsat
[Termes IGN] image multitemporelle
[Termes IGN] réseau neuronal convolutif
[Termes IGN] semis de pointsRésumé : (Auteur) Terrestrial landscape has complex three-dimensional (3D) features that are difficult to extract using traditional methods based on 2D representations. These methods often relegate such features to raster or metric-based (two-dimensional) representations based on Digital Surface Models (DSM) or Digital Elevation Models (DEM), and thus are not suitable for resolving morphological and intensity features for fine-scale land cover mapping. Small-footprint LiDAR provides an ideal way for capturing these 3D features. This research develops a novel method of integrating airborne LiDAR derived features and multi-temporal Landsat images to classify land cover types. We tested our approach in Williamson County, Illinois, which has diverse and mixed landscape features. Specifically, our method applied a 3D convolutional neural network (CNN) approach to extract features from LiDAR point clouds by (1) creating an occupancy grid, an intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into the 3D CNN. The extracted features (e.g., morphological and intensity features) from the 3D CNN were finally combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. Visual interpretation from both hyper-resolution photos and point clouds was used for training and preparation of testing data. The classification results show that our method outperforms a traditional method by 2.65% (from 81.52% to 84.17%) when solely using LiDAR and 2.19% (from 90.20% to 92.57%) when combining all available imageries. We demonstrate that our method can effectively extract LiDAR features and improve fine-scale land cover mapping through fusion of complementary types of remote sensing data. Numéro de notice : A2018-405 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.08.005 Date de publication en ligne : 22/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.08.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90859
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 423 - 434[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Crowdsourcing functions of the living city from Twitter and Foursquare data / Xiaolu Zhou in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)
[article]
Titre : Crowdsourcing functions of the living city from Twitter and Foursquare data Type de document : Article/Communication Auteurs : Xiaolu Zhou, Auteur ; Liang Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 393 - 404 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Boston (Massachusetts)
[Termes IGN] Chicago (Illinois)
[Termes IGN] dimension temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géobalise
[Termes IGN] planification urbaine
[Termes IGN] réseau social
[Termes IGN] système d'information géographique
[Termes IGN] villeRésumé : (Auteur) Urban functions are closely related to people’s spatiotemporal activity patterns, transportation needs, and a city’s business distribution and development trends. Studies investigating urban functions have used different data sources, such as remotely sensed imageries, observation, photography, and cognitive maps. However, these data sources usually suffer from low spatial, temporal, and thematic resolution. This article attempts to investigate human activities to understand urban functions through crowdsourcing social media data. In this study, we mined Twitter and Foursquare data to extract and analyze six types of human activities. The spatiotemporal analysis revealed hotspots for different activity intensities at different temporal resolution. We also applied the classified model in a real-time system to extract information of various urban functions. This study demonstrates the significance and usefulness of social sensing in analyzing urban functions. By combining different platforms of social media data and analyzing people’s geo-tagged city experience, this article contributes to leverage voluntary local knowledge to better depict human dynamics, discover spatiotemporal city characteristics, and convey information about cities. Numéro de notice : A2016-690 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/15230406.2015.1128852 En ligne : https://doi.org/10.1080/15230406.2015.1128852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82018
in Cartography and Geographic Information Science > vol 43 n° 5 (November 2016) . - pp 393 - 404[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016051 RAB Revue Centre de documentation En réserve L003 Disponible Privacy and spatial pattern preservation in masked GPS trajectory data / Dara E. Seidl in International journal of geographical information science IJGIS, vol 30 n° 3-4 (March - April 2016)PermalinkComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images / Andrew L. Fleming in European Journal of Forest Research, vol 134 n° 1 (January 2015)PermalinkModeling commute patterns in Chicago in a GIS environment: a job-accessibility perspective / F. Wang in The professional geographer, vol 52 n° 1 (February 2000)PermalinkThematic Mapper thermal infrared data in discriminating selected urban features / S.M. Leak in International Journal of Remote Sensing IJRS, vol 11 n° 5 (May 1990)PermalinkA technique for extrapolating and validating forest cover across large region : calibrating AVHRR data with TM data / Louis R. Iverson in International Journal of Remote Sensing IJRS, vol 10 n° 11 (November 1989)PermalinkObservation of the adjacency effect in Thematic Mapper imagery / W.H. Carnahan in Geocarto international, vol 4 n° 2 (June - August 1989)PermalinkEstimating forest productivity with Thematic Mapper and biogeographical data / E.A. Cook in Remote sensing of environment, vol 28 n° 1 (April - June 1989)PermalinkLow-relief topographic enhancement in a Landsat snow-cover scene / J.R. Eyton in Remote sensing of environment, vol 27 n° 2 (01/02/1989)PermalinkDetermination of the vertical pattern of the SIR-B antenna / R.K. Moore in International Journal of Remote Sensing IJRS, vol 9 n° 5 (May 1988)PermalinkRemote sensing investigations at a hazardous-waste landfill / C. Stohr in Photogrammetric Engineering & Remote Sensing, PERS, vol 53 n° 11 (november 1987)Permalink