Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Mongolie intérieure (Chine)
Mongolie intérieure (Chine)Synonyme(s)Nei mongol |
Documents disponibles dans cette catégorie (6)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images / Yiying Hua in Forests, vol 12 n° 12 (December 2021)
[article]
Titre : Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images Type de document : Article/Communication Auteurs : Yiying Hua, Auteur ; Xuesheng Zhao, Auteur Année de publication : 2021 Article en page(s) : n° 1768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] bande infrarouge
[Termes IGN] coefficient de corrélation
[Termes IGN] couvert forestier
[Termes IGN] détection de contours
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle statistique
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] régression
[Termes IGN] surveillance de la végétationRésumé : (auteur) In remote sensing, red edge bands are important indicators for monitoring vegetation growth. To examine the application potential of red edge bands in forest canopy closure estimation, three types of commonly used models—empirical statistical models (multiple stepwise regression (MSR)), machine learning models (back propagation neural network (BPNN)) and physical models (Li–Strahler geometric-optical (Li–Strahler GO) models)—were constructed and verified based on Sentinel-2 data, DEM data and measured data. In addition, we set up a comparative experiment without red edge bands. The relative error (ER) values of the BPNN model, MSR model, and Li–Strahler GO model with red edge bands were 16.97%, 20.76% and 24.83%, respectively. The validation accuracy measures of these models were higher than those of comparison models. For comparative experiments, the ER values of the MSR, Li–Strahler GO and BPNN models were increased by 13.07%, 4% and 1.22%, respectively. The experimental results demonstrate that red edge bands can effectively improve the accuracy of forest canopy closure estimation models to varying degrees. These findings provide a reference for modeling and estimating forest canopy closure using red edge bands based on Sentinel-2 images. Numéro de notice : A2021-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f12121768 Date de publication en ligne : 14/12/2021 En ligne : https://doi.org/10.3390/f12121768 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99318
in Forests > vol 12 n° 12 (December 2021) . - n° 1768[article]Les pérégrinations d'un topographe en Chine / Bernard Flacelière in XYZ, n° 164 (septembre 2020)
[article]
Titre : Les pérégrinations d'un topographe en Chine Type de document : Article/Communication Auteurs : Bernard Flacelière, Auteur Année de publication : 2020 Article en page(s) : pp 61 - 67 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Topographie moderne
[Termes IGN] géodésie tridimensionnelle
[Termes IGN] hydrocarbure
[Termes IGN] mission de terrain
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] point géodésique
[Termes IGN] système de référence géodésique
[Termes IGN] topographeRésumé : (auteur) C'est avec un clin d'oeil à Jules Verne et à son roman d'aventures paru en 1879, les Tribulations d'unChinois en Chine, que le topographe rapporte ici les quelques semaines vécues en Mongolie-Intérieure, à Chengdu au Sichuan et enfin à la capitale Beijing (figure 1). Une compagnie française d'exploration et de production d'hydrocarbures ayant obtenu de la part des autorités chinoises le contrat de développement d'un champ gazier déjà découvert, une campagne de sismique terrestre 3D est programmée, à suivre par des forages d'appréciation puis de développement et enfin la construction d'infrastructures dont des pistes, routes, gazoducs, centres de traitement et d'expédition. Des travaux
géodésiques sont donc nécessaires, avec rattachement au système géodésique officiel, établissement d'un réseau de détail et relevés des installations existantes. Comme dans de nombreux pays ayant grandi dans la culture du secret des informations géographiques, le topographe découvrira que la géodésie en Chine n'est pas une sinécure.Numéro de notice : A2020-555 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95824
in XYZ > n° 164 (septembre 2020) . - pp 61 - 67[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
[article]
Titre : Complete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China Type de document : Article/Communication Auteurs : Kun Tan, Auteur ; Chao Niu, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1 - 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] atténuation
[Termes IGN] correction atmosphérique
[Termes IGN] distorsion du signal
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] image hyperspectrale
[Termes IGN] mine
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] mosaïquage d'images
[Termes IGN] radiance
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] Short Waves InfraRed
[Termes IGN] spectroradiométrie
[Termes IGN] surveillance écologiqueRésumé : (auteur) Airborne hyperspectral remote sensing is an important application in the ecological monitoring of the environment in mining areas, and accurate preprocessing of the original images is the key to quantitative information retrieval. The original image data need radiation correction to acquire surface reflectance data. Due to the impact of the field angle, incidental radiance, and the bidirectional reflectance distribution function (BRDF), there can be a brightness gradient between adjacent strips, which leads to radiance difference and obvious chromatic aberration of the mosaicked images. We propose a novel data correction method for seamless mosaicking of airborne hyperspectral images. Firstly, visible and near-infrared (VNIR) and shortwave infrared (SWIR) sensors are calibrated in the laboratory, and the radiation calibration model of the sensor is established by an integrating-sphere system. A correction function is then established by combining the BRDF effect and the radiation attenuation coefficients. We also normalize the exposure time, sun altitude angle, and sensor altitude angle according to the flight strip. The results showed that this method is able to eliminate the signal distortion, allowing the seamless mosaicking of 37 strip images which were taken in different date and conditions in the study area. After the atmospheric correction of the imagery was completed, the accuracy of the preprocessing results was evaluated by field-measured ASD spectroradiometer data. The coefficient of determination R2 of the results for the reflectance was greater than 0.9. The experiments show that the proposed method has a good performance in radiation accuracy, and can provide high-quality hyperspectral data for the follow-up application of the ecological monitoring of a mining area. Numéro de notice : A2020-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.022 Date de publication en ligne : 16/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95092
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 1 - 15[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Land-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images / Temulun Tangud in Geocarto international, vol 34 n° 11 ([15/08/2019])
[article]
Titre : Land-cover change in the Wulagai grassland, Inner Mongolia of China between 1986 and 2014 analysed using multi-temporal Landsat images Type de document : Article/Communication Auteurs : Temulun Tangud, Auteur ; Kenlo Nasahara, Auteur ; Habura Borjigin, Auteur ; Hasi Bagan, Auteur Année de publication : 2019 Article en page(s) : pp 1237 - 1251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de changement
[Termes IGN] image Landsat
[Termes IGN] maillage
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] prairie
[Termes IGN] série temporelle
[Termes IGN] steppe
[Termes IGN] zone arideRésumé : (Auteur) The Inner Mongolian steppe is a vast grassland ecosystem that has long been home to nomadic pastoralists. However, this steppe is experiencing grassland degradation as well as more frequent sand storms. The objective of this study was to detect land-cover changes in the Wulagai grassland of Inner Mongolia using multi-temporal Landsat images from 1986 to 2014, and to determine the factors driving these changes and their impacts. Land-cover maps for 1986, 1995, 2000, 2006 and 2014 were produced using the Support Vector Machine method. Subsequently, 300 m × 300 m grid-cell vector map which covered Wulagai grassland was made to detect land-cover changes and correlations between land-cover classes. The results show degradation trend from 1986 to 2014. Grid-cell-based spatial correlation analysis confirmed a strong negative correlation between grassland and barren, indicating that grassland degradation in this region is due to the regional modernization over the past 28 years. Numéro de notice : A2019-464 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1478457 Date de publication en ligne : 01/06/2018 En ligne : https://doi.org/10.1080/10106049.2018.1478457 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93607
in Geocarto international > vol 34 n° 11 [15/08/2019] . - pp 1237 - 1251[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019111 RAB Revue Centre de documentation En réserve L003 Disponible A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] forêt
[Termes IGN] géostatistique
[Termes IGN] image Landsat-OLI
[Termes IGN] image SPOT 5
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China / Hai Lan in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)Permalink