Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > océanographie > océanographie dynamique
océanographie dynamiqueVoir aussi |
Documents disponibles dans cette catégorie (263)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami / Riantini Virtriana in Geomatics, Natural Hazards and Risk, vol 14 n° 1 (2023)
[article]
Titre : Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami Type de document : Article/Communication Auteurs : Riantini Virtriana, Auteur ; Agung Budi Harto, Auteur ; Fiza Wira Atmaja, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 28 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] base de données d'images
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dommage matériel
[Termes IGN] données Copernicus
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] Indonésie
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] tsunamiRésumé : (auteur) In Indonesia, tsunamis are frequent events. In 2000–2016, there were 44 tsunami events in Indonesia, with financial losses reaching 43.38 trillion. In 2018, a tsunami occurred in the Sunda Strait due to the eruption of the Anak Krakatau Volcano, which caused many fatalities and much building damage. This study aimed to detect the building damage in the Labuan District, Banten Province. Machine learning methods were used to detect building damage using random forest with object-based techniques. No previous research has combined selected predictors into scenarios; hence, the novelty of this study is combining various random forest predictors to identify the extent of building damage using 14 predictor scenarios. In addition, field surveys were conducted two years and nine months after the tsunami to observe the changes and efforts made. The results of the random forest classification were validated and compared with three datasets, namely xBD, Copernicus, and field survey data. The results of this study can help classify the level of building damage using satellite imagery to improve mitigation in tsunami-prone areas. Numéro de notice : A2023-037 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475705.2022.2147455 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1080/19475705.2022.2147455 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102307
in Geomatics, Natural Hazards and Risk > vol 14 n° 1 (2023) . - pp 28 - 51[article]Modeling the gravitational effects of ocean tide loading at coastal stations in the China earthquake gravity network based on GOTL software / Chuandong Zhu in Journal of applied geodesy, vol 17 n° 1 (January 2023)
[article]
Titre : Modeling the gravitational effects of ocean tide loading at coastal stations in the China earthquake gravity network based on GOTL software Type de document : Article/Communication Auteurs : Chuandong Zhu, Auteur ; Liuqing Pang, Auteur ; Didi Sheng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 15 - 27 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur local
[Termes IGN] Chine
[Termes IGN] fonction de Green
[Termes IGN] littoral
[Termes IGN] marée océanique
[Termes IGN] modèle de géopotentiel
[Termes IGN] modèle numérique de surface
[Termes IGN] surcharge océaniqueRésumé : (auteur) The gravitational effects of ocean tide loading, which are one of the main factors affecting gravity measurements, consist of three components: (1) direct attraction from the tidal water masses, (2) radial displacement of the observing station due to the tidal load, and (3) internal redistribution of masses due to crustal deformation. In this study, software for gravitational effects of ocean tide loading was developed by evaluating a convolution integral between the ocean tide model and Green’s functions that describe the response of the Earth to tide loading. The effects of three-dimensional station coordinates, computational grid patterns, ocean tide models, Green’s functions, coastline, and local tide gauge were comprehensively considered in the programming process. Using a larger number of high-precision coastlines, ocean tide models, and Green’s functions, the reliability and applicability of the software were analyzed at coastal stations in the China Earthquake Gravity Network. The software can provide the amplitude and phase for ocean tide loading and produce a predicted gravity time series. The results can effectively reveal the variation characteristics of ocean tide loading in space and time. The computational gravitational effects of ocean tide loading were compared and analyzed for different ocean tide models and Green’s functions. The results show that different ocean tide models and Green’s functions have certain effects on the calculated values of loading gravity effects. Furthermore, a higher-precision local ocean tide model, digital elevation model, and local tidal gauge record can be further imported into our software to improve the accuracy of loading gravity effects in the global and local zones. The software is easy to operate and can provide a comprehensive platform for correcting the gravitational effects of ocean tide loading at stations in the China Earthquake Gravity Network. Numéro de notice : A2023-112 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2022-0023 Date de publication en ligne : 03/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102471
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 15 - 27[article]Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran / Kourosh Shahryari Nia in Marine geodesy, vol 45 n° 6 (November 2022)
[article]
Titre : Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran Type de document : Article/Communication Auteurs : Kourosh Shahryari Nia, Auteur ; Mohammad Ali Sharifi, Auteur ; Saeed Farzaneh, Auteur Année de publication : 2022 Article en page(s) : pp 645 - 669 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse harmonique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données marégraphiques
[Termes IGN] Iran
[Termes IGN] marée océanique
[Termes IGN] modèle de simulation
[Termes IGN] niveau de la mer
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low. Numéro de notice : A2022-783 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/01490419.2022.2116615 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1080/01490419.2022.2116615 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101880
in Marine geodesy > vol 45 n° 6 (November 2022) . - pp 645 - 669[article]Use of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand / Kiatkulchai Jitt-Aer in Natural Hazards, vol 113 n° 1 (August 2022)
[article]
Titre : Use of GIS and dasymetric mapping for estimating tsunami-affected population to facilitate humanitarian relief logistics: a case study from Phuket, Thailand Type de document : Article/Communication Auteurs : Kiatkulchai Jitt-Aer, Auteur ; Graham Wall, Auteur ; Dylan Jones, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 185 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse spatiale
[Termes IGN] ArcGIS
[Termes IGN] figuration de la densité
[Termes IGN] gestion de crise
[Termes IGN] interpolation spatiale
[Termes IGN] planification côtière
[Termes IGN] population
[Termes IGN] prévention des risques
[Termes IGN] Thaïlande
[Termes IGN] tsunamiRésumé : (auteur) The 2004 Indian Ocean tsunami led to improvements in Thailand’s early warning systems and evacuation procedures. However, there was no consideration of better aid delivery, which critically depends on estimates of the affected population. With the widespread use of geographical information systems (GIS), there has been renewed interest in spatial population estimation. This study has developed an application to determine the number of disaster-impacted people in a given district, by integrating GIS and population estimation algorithms, to facilitate humanitarian relief logistics. A multi-stage spatial interpolation is used for estimating the affected populations using ArcGIS software. We present a dasymetric mapping approach using a population-weighted technique coupled with remote sensing data. The results in each target area show the coordinates of each shelter location for evacuees, with the minimum and maximum numbers of people affected by the tsunami inundation. This innovative tool produces not only numerical solutions for decision makers, but also a variety of maps that improve visualisation of disaster severity across neighbourhoods. A case study in Patong, a town of Phuket, illustrates the application of this GIS-based approach. The outcomes can be used as key decision-making factors in planning and managing humanitarian relief logistics in the preparedness and response phases to improve performance with future tsunami occurrences, or with other types of flood disaster. Numéro de notice : A2022-703 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-022-05295-x Date de publication en ligne : 09/03/2022 En ligne : https://doi.org/10.1007/s11069-022-05295-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101566
in Natural Hazards > vol 113 n° 1 (August 2022) . - pp 185 - 211[article]Littoraux sous double surveillance / Laurent Polidori in Géomètre, n° 2204 (juillet-août 2022)
[article]
Titre : Littoraux sous double surveillance Type de document : Article/Communication Auteurs : Laurent Polidori, Auteur Année de publication : 2022 Article en page(s) : pp 23 - 23 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Litto3D
[Termes IGN] marée océanique
[Termes IGN] montée du niveau de la mer
[Termes IGN] satellite d'observation de la mer
[Termes IGN] satellite d'observation de la Terre
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (Auteur) Concentré d’enjeux écologiques et sociaux, le littoral est sous la surveillance permanente des satellites. Mais cet objet complexe et changeant se dérobe parfois à l’observation. Numéro de notice : A2022-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101295
in Géomètre > n° 2204 (juillet-août 2022) . - pp 23 - 23[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2022071 RAB Revue Centre de documentation En réserve L003 En circulation
Exclu du prêtModeling gravimetric signatures of third-degree ocean tides and their detection in superconducting gravimeter records / Roman Sulzbach in Journal of geodesy, vol 96 n° 5 (May 2022)PermalinkLa bathymétrie ancienne au service de l’étude de tsunamis inexpliqués : le cas du pertuis d’Antioche (1785, 1875, 1882) / Helen Mair Rawsthorne in Norois, n° 263 (avril - juin 2022)PermalinkCoastal observation of sea surface tide and wave height using opportunity signal from Beidou GEO satellites: analysis and evaluation / Feng Wang in Journal of geodesy, vol 96 n° 4 (April 2022)PermalinkCo-seismic ionospheric disturbances following the 2016 West Sumatra and 2018 Palu earthquakes from GPS and GLONASS measurements / Mokhamad Nur Cahyadi in Remote sensing, vol 14 n° 2 (January-2 2022)PermalinkCartographie dynamique de la topographie de l'océan de surface par assimilation de données altimétriques / Florian Le Guillou (2022)PermalinkModélisation du lien entre éruptions et glissements de flancs au Piton de la Fournaise / Quentin Dumont (2022)PermalinkGIS to identify exposed shoreline sectors to wave impacts: case of El Tarf coast / Abdeldjalil Goumrasa in Applied geomatics, vol 13 n° 4 (December 2021)PermalinkLa modélisation des eaux / Michel Kasser in Géomètre, n° 2197 (décembre 2021)PermalinkEfficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine / Yongjing Mao in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)PermalinkEvaluation of global ocean tide models based on tidal gravity observations in China / Hongbo Tan in Geodesy and Geodynamics, vol 12 n° 6 (November 2021)Permalink