Descripteur
Documents disponibles dans cette catégorie (115)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal / Cristina Alegria in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal Type de document : Article/Communication Auteurs : Cristina Alegria, Auteur ; Alice M. Almeida, Auteur ; Natalia Roque, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] gestion forestière
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] Pinus pinaster
[Termes IGN] Portugal
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) To date, a variety of species potential distribution mapping approaches have been used, and the agreement in maps produced with different methodological approaches should be assessed. The aims of this study were: (1) to model Maritime pine potential distributions for the present and for the future under two climate change scenarios using the machine learning Maximum Entropy algorithm (MaxEnt); (2) to update the species ecological envelope maps using the same environmental data set and climate change scenarios; and (3) to perform an agreement analysis for the species distribution maps produced with both methodological approaches. The species distribution maps produced by each of the methodological approaches under study were reclassified into presence–absence binary maps of species to perform the agreement analysis. The results showed that the MaxEnt-predicted map for the present matched well the species’ current distribution, but the species ecological envelope map, also for the present, was closer to the species’ empiric potential distribution. Climate change impacts on the species’ future distributions maps using the MaxEnt were moderate, but areas were relocated. The 47.3% suitability area (regular-medium-high), in the present, increased in future climate change scenarios to 48.7%–48.3%. Conversely, the impacts in species ecological envelopes maps were higher and with greater future losses than the latter. The 76.5% suitability area (regular-favourable-optimum), in the present, decreased in future climate change scenarios to 58.2%–51.6%. The two approaches combination resulted in a 44% concordance for the species occupancy in the present, decreasing around 30%–35% in the future under the climate change scenarios. Both methodologies proved to be complementary to set species’ best suitability areas, which are key as support decision tools for planning afforestation and forest management to attain fire-resilient landscapes, enhanced forest ecosystems biodiversity, functionality and productivity. Numéro de notice : A2023-167 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030591 Date de publication en ligne : 16/03/2023 En ligne : https://doi.org/10.3390/f14030591 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102904
in Forests > vol 14 n° 3 (March 2023) . - n° 591[article]Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach Type de document : Article/Communication Auteurs : Shenglong Chen, Auteur ; Yoshiki Ogawa, Auteur ; Chenbo Zhao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 129 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] détection du bâti
[Termes IGN] distribution de Gauss
[Termes IGN] image à haute résolution
[Termes IGN] mosaïquage d'images
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Building footprint is a primary dataset of an urban geographic information system (GIS) database. Therefore, it is essential to establish a robust and automated framework for large-scale building extraction. However, the characteristic of remote sensing images complicates the application of the instance segmentation method based on the Mask R-CNN model, which ought to be improved toward extracting and fusing multi-scale features. Moreover, open-source satellite image datasets with wider spatial coverage and temporal resolution than high-resolution images may exhibit different coloration and resolution. This study proposes a large-scale building extraction framework based on super-resolution (SR) and instance segmentation using a relatively lower-resolution (>0.6 m) open-sourced dataset. The framework comprises four steps: color normalization and image super-resolution, scene classification, building extraction, and scene mosaicking. We took Hyogo Prefecture, Japan (19,187 km2) as a test area and extracted 1,726,006 (29.12 km2) of the 3,301,488 buildings (32.46 km2), where the number of buildings and footprint area increased by 3.0 % and 5.0 % respectively. The result indicated that the color normalization and image super-resolution could improve the visual quality of open-source satellite images and contribute to building extraction accuracy. Moreover, the improved Mask R-CNN based on Multi-Path Vision Transformer (MPViT) backbone achieved F1 scores of 0.71, 0.70, 0.81, and 0.67 for non-built-up, rural, suburban, and urban areas, respectively, which is better than those of the baseline model and other mainstream instance segmentation approaches. This study demonstrates the potential of acquiring acceptable building footprint maps from open-source satellite images, which has significant practical implications. Numéro de notice : A2023-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.006 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102214
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 129 - 152[article]Uncertainty estimation for stereo matching based on evidential deep learning / Chen Wang in Pattern recognition, vol 124 (April 2022)
[article]
Titre : Uncertainty estimation for stereo matching based on evidential deep learning Type de document : Article/Communication Auteurs : Chen Wang, Auteur ; Xiang Wang, Auteur ; Jiawei Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] distribution de Gauss
[Termes IGN] fonction de perte
[Termes IGN] lissage de données
[Termes IGN] modèle d'incertitude
[Termes IGN] reconstruction d'imageRésumé : (auteur) Although deep learning-based stereo matching approaches have achieved excellent performance in recent years, it is still a non-trivial task to estimate the uncertainty of the produced disparity map. In this paper, we propose a novel approach to estimate both aleatoric and epistemic uncertainties for stereo matching in an end-to-end way. We introduce an evidential distribution, named Normal Inverse-Gamma (NIG) distribution, whose parameters can be used to calculate the uncertainty. Instead of directly regressed from aggregated features, the uncertainty parameters are predicted for each potential disparity and then averaged via the guidance of matching probability distribution. Furthermore, considering the sparsity of ground truth in real scene datasets, we design two additional losses. The first one tries to enlarge uncertainty on incorrect predictions, so uncertainty becomes more sensitive to erroneous regions. The second one enforces the smoothness of the uncertainty in the regions with smooth disparity. Most stereo matching models, such as PSM-Net, GA-Net, and AA-Net, can be easily integrated with our approach. Experiments on multiple benchmark datasets show that our method improves stereo matching results. We prove that both aleatoric and epistemic uncertainties are well-calibrated with incorrect predictions. Particularly, our method can capture increased epistemic uncertainty on out-of-distribution data, making it effective to prevent a system from potential fatal consequences. Code is available at https://github.com/Dawnstar8411/StereoMatching-Uncertainty. Numéro de notice : A2022-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.patcog.2021.108498 Date de publication en ligne : 23/12/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99992
in Pattern recognition > vol 124 (April 2022) . - n° 108498[article]Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods / Bin Zhang in GIScience and remote sensing, vol 59 n° 1 (2022)
[article]
Titre : Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods Type de document : Article/Communication Auteurs : Bin Zhang, Auteur ; Haijun Wang, Auteur Année de publication : 2022 Article en page(s) : pp 71 - 95 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] entropie maximale
[Termes IGN] modèle de simulation
[Termes IGN] paysage urbain
[Termes IGN] Pékin (Chine)
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)Résumé : (auteur) As a powerful predictive technique based on machine learning, the maximum entropy (MaxEnt) model has been widely used in geographic modeling. However, its performance in calibrating cellular automata (CA) for urban growth simulation has not been investigated. This study compares the MaxEnt model with logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM) models to explore its advantages in simulating urban growth and interpreting driving mechanisms. With the land use data of 2000 and 2020 from GlobeLand30, the constructed LR-CA, ANN-CA, SVM-CA, and MaxEnt-CA models are applied to simulate the urban growth of Beijing, Tianjin, and Wuhan, respectively. Their performance has been evaluated from multiple aspects such as the accuracy of training, testing, and projecting, computational efficiency, simulation accuracy, and simulated urban landscape. The results indicate that the MaxEnt model is superior to the other models except for the computational efficiency, but the time required for the MaxEnt training and projecting is acceptable and far less than that of the SVM. Taking the LR-CA as the benchmark, the kappa coefficients (Kappa) of the MaxEnt-CA have been increased by 4.20%, 3.38%, and 5.87% in Beijing, Tianjin, and Wuhan, respectively; the increments of corresponding figure of merits (FoM) are 6.26%, 4.58%, and 8.49%. The driving mechanisms of urban growth such as the interactions, response curves, and importance of spatial variables, have also been revealed by the MaxEnt modeling. The driving mechanisms of urban growth in Tianjin are more complex than that in Beijing and Wuhan, because there are more variable interactions; the relationships between spatial factors and urban growth in the three study areas are all nonlinear; the topographic factors and city center of Beijing, the traffic factors and water bodies of Tianjin, and the traffic factors, city center and water bodies of Wuhan are significant factors affecting their urban growth. Numéro de notice : A2022-130 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/15481603.2021.2016240 Date de publication en ligne : 30/12/2021 En ligne : https://doi.org/10.1080/15481603.2021.2016240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99715
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 71 - 95[article]Endmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Endmember bundle extraction based on multiobjective optimization Type de document : Article/Communication Auteurs : Rong Liu, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2021 Article en page(s) : pp 8630 - 8645 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] compensation par faisceaux
[Termes IGN] distribution de Pareto
[Termes IGN] image hyperspectrale
[Termes IGN] modèle linéaire
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) A number of endmember extraction methods have been developed to identify pure pixels in hyperspectral images (HSIs). The majority of them use only one spectrum to represent one kind of material, which ignores the spectral variability problem that particularly characterizes a HSI with high spatial resolution. Only a few algorithms have been developed to identify multiple endmembers representing the spectral variability within each class, called endmember bundle extraction (EBE). This article introduces multiobjective particle swarm optimization for the identification of multiple endmember spectra with variability. Unlike existing convex geometry-based EBE methods, which operate on a single geometry of the dataspace, the proposed method divides the observed data into subsets along the spectral dimension and simultaneously operates on multiple dataspaces to obtain candidate endmembers based on multiobjective particle swarm optimization. The candidate endmembers are then refined by spatial post-processing and sequential forward floating selection to produce the final result. Experiments are conducted on both synthetic and real hyperspectral data to demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art methods. Numéro de notice : A2021-714 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3037249 En ligne : https://doi.org/10.1109/TGRS.2020.3037249 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98621
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8630 - 8645[article]Benford’s law and geographical information – the example of OpenStreetMap / Franz-Benjamin Mocnik in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)PermalinkModeling in forestry using mixture models fitted to grouped and ungrouped data / Eric K. Zenner in Forests, vol 12 n° 9 (September 2021)PermalinkRole of maximum entropy and citizen science to study habitat suitability of jacobin cuckoo in different climate change scenarios / Priyinka Singh in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkHorvitz-Thompson–like estimation with distance-based detection probabilities for circular plot sampling of forests / Kasper Kansanen in Biometrics, vol 77 n° 2 (June 2021)PermalinkHyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)PermalinkSpace-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)PermalinkUrban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB / Mahya Norallahi in Natural Hazards, vol 106 n° 1 (March 2021)PermalinkUsing automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain / R. Niederheiser in GIScience and remote sensing, vol 58 n° 1 (February 2021)PermalinkPermalinkPermalink