Détail de l'auteur
Auteur M. Gahegan |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach / D. Guo in Cartography and Geographic Information Science, vol 32 n° 2 (April 2005)
[article]
Titre : Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach Type de document : Article/Communication Auteurs : D. Guo, Auteur ; M. Gahegan, Auteur ; et al., Auteur Année de publication : 2005 Article en page(s) : pp 113 - 132 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] analyse multivariée
[Termes IGN] carte de Kohonen
[Termes IGN] découverte de connaissances
[Termes IGN] données cartographiques
[Termes IGN] échantillon
[Termes IGN] interactivité
[Termes IGN] visualisation de donnéesRésumé : (Auteur) The discovery, interpretation, and presentation of multivariate spatial patterns are important for scientific understanding of complex geographic problems. This research integrates computational, visual, and cartographic methods together to detect and visualize multivariate spatial patterns. The integrated approach is able to: (1) perform multivariate analysis, dimensional reduction, and data reduction (summarizing a large number of input data items in a moderate number of clusters) with the Self-Organizing Map (SOM); (2) encode the SOM result with a systematically designed color scheme; (3) visualize the multivariate patterns with a modified Parallel Coordinate Plot (PCP) display and a geographic map (GeoMap); and (4) support human interactions to explore and examine patterns. The research shows that such "mixed initiative" methods (computational and visual) can mitigate each other's weakness and collaboratively discover complex patterns in large geographic datasets, in an effective and efficient way. Numéro de notice : A2005-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1559/1523040053722150 En ligne : https://doi.org/10.1559/1523040053722150 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=27328
in Cartography and Geographic Information Science > vol 32 n° 2 (April 2005) . - pp 113 - 132[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-05021 RAB Revue Centre de documentation En réserve L003 Disponible ICEAGE: interactive clustering and exploration of large and high-dimensional geodata / D. Guo in Geoinformatica, vol 7 n° 3 (September - November 2003)
[article]
Titre : ICEAGE: interactive clustering and exploration of large and high-dimensional geodata Type de document : Article/Communication Auteurs : D. Guo, Auteur ; Donna J. Peuquet, Auteur ; M. Gahegan, Auteur Année de publication : 2003 Conférence : ACM GIS 2002, 10th ACM International Symposium on Advances in Geographic Information Systems 08/11/2002 09/11/2002 McLean Virginie - Etats-Unis Selected papers Article en page(s) : pp 229 - 253 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification automatique d'objets
[Termes IGN] découverte de connaissances
[Termes IGN] évaluation
[Termes IGN] interactivité
[Termes IGN] segmentation
[Termes IGN] visualisation de donnéesRésumé : (Auteur) The unprecedented large size and high dimensionality of existing geographic datasets make the complex patterns that potentially lurk in the data hard to find. Clustering is one of the most important techniques for geographic knowledge discovery. However, existing clustering methods have two severe drawbacks for this purpose. First, spatial clustering methods focus on the specific characteristics of distributions in 2or 3D space, while general-purpose highdimensional clustering methods have limited power in recognizing spatial patterns that involve neighbors. Second, clustering methods in general are not geared toward allowing the humancomputer interaction needed to effectively teaseout complex patterns.
In the current paper, an approach is proposed to open up the "black box" of the clustering process for easy understanding, steering, focusing and interpretation, and thus to support an effective exploration of large and high dimensional geographic data. The proposed approach involves building a hierarchical spatial cluster structure ithin the highdimensional feature space, and using this combined space for discovering multidimensional (combined spatial and nonspatial) patterns with efficient computational clustering methods and highly interactive visualization techniques. More specifically, this includes the integration of: (1) a hierarchical spatial clustering method to generate a 1D spatial cluster ordering that preserves the hierarchical cluster structure, and (2) a density and gridbased technique to effectively support the interactive identification of interesting subspaces and subsequent searching for clusters in each subspace. The implementation of the proposed approach is in a fully open and interactive manner supported by various visualization techniques.Numéro de notice : A2003-201 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1023/A:1025101015202 En ligne : https://doi.org/10.1023/A:1025101015202 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22497
in Geoinformatica > vol 7 n° 3 (September - November 2003) . - pp 229 - 253[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-03031 RAB Revue Centre de documentation En réserve L003 Disponible The integration of geographic visualization with knowledge discovery in databases and geocomputation / M. Gahegan in Cartography and Geographic Information Science, vol 28 n° 1 (January 2001)
[article]
Titre : The integration of geographic visualization with knowledge discovery in databases and geocomputation Type de document : Article/Communication Auteurs : M. Gahegan, Auteur ; Monica Wachowicz, Auteur ; et al., Auteur Année de publication : 2001 Article en page(s) : pp 29 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] analyse visuelle
[Termes IGN] base de connaissances
[Termes IGN] base de données localisées
[Termes IGN] cartographie numérique
[Termes IGN] découverte de connaissances
[Termes IGN] état de l'art
[Termes IGN] exploration de données géographiques
[Termes IGN] visualisationRésumé : (Auteur) This paper details the research agenda of the International Cartographic Association Commission on Visualization / Working group on Database-Visualization Links. The paper stressed the need for the closer integration of the three largely disparate technologies : geographic visualization, knowledge discovery in databases, and geocomputation. The introduction explains the meaning behind these terms, the ethos behind their practice, and their connections within the broad realm of knowledge construction activities. The state of the art is then described for different approaches to knowledge construction, concentrating where possible on visual and geographically oriented methods. From these sections, a research agenda is synthetized in the form of three sets of research questions adressing : (1) Visual approches to data mining ; (2) visual support for knowledge construction and geocomputation ; and (3) database and data models that must be satisfied to make visually-led knowledge construction a reality in the geographic realm. Conclusions relate this agenda to issues of (1) data, (2) geographic knowledge, and (3) the visualization environment and pose significant challenges to the way currently represent geographic information and knowledge within computational systems. Numéro de notice : A2001-160 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1559/152304001782173952 En ligne : https://doi.org/10.1559/152304001782173952 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=21855
in Cartography and Geographic Information Science > vol 28 n° 1 (January 2001) . - pp 29 - 44[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-01011 RAB Revue Centre de documentation En réserve L003 Disponible