Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Etats-Unis > Colorado (Etats-Unis)
Colorado (Etats-Unis) |
Documents disponibles dans cette catégorie (25)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions / Rasit Ulug in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions Type de document : Article/Communication Auteurs : Rasit Ulug, Auteur ; Mahmut Onur Karslıoglu, Auteur Année de publication : 2022 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de groupement
[Termes IGN] Auvergne
[Termes IGN] centroïde
[Termes IGN] champ de pesanteur local
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] fonction de base radiale
[Termes IGN] largeur de bande
[Termes IGN] modèle de géopotentiel local
[Termes IGN] modèle numérique de terrainRésumé : (auteur) In this study, a new data-adaptive network design methodology called k-SRBF is presented for the spherical radial basis functions (SRBFs) in regional gravity field modeling. In this methodology, the cluster centers (centroids) obtained by the k-means clustering algorithm are post-processed to construct a network of SRBFs by replacing the centroids with the SRBFs. The post-processing procedure is inspired by the heuristic method, Iterative Self-Organizing Data Analysis Technique (ISODATA), which splits clusters within the user-defined criteria to avoid over- and under-parameterization. These criteria are the minimum spherical distance between the centroids and the minimum number of samples for each cluster. The bandwidth (depth) of each SRBF is determined using the generalized cross-validation (GCV) technique in which only the observations within the radius of impact area (RIA) are used. The numerical tests are carried out with real and simulated data sets to investigate the effect of the user-defined criteria on the network design. Different bandwidth limits are also examined, and the appropriate lower and upper bandwidth limits are chosen based on the empirical signal covariance function and user-defined criteria. Also, additional tests are performed to verify the performance of the proposed methodology in combining different types of observations, such as terrestrial and airborne data available in Colorado. The results reveal that k-SRBF is an effective methodology to establish a data-adaptive network for SRBFs. Moreover, the proposed methodology improves the condition number of normal equation matrix so that the least-squares procedure can be applied without regularization considering the user-defined criteria and bandwidth limits. Numéro de notice : A2022-877 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01681-2 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01681-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102190
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 91[article]Understanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models / Tong Zhang in Transactions in GIS, vol 25 n° 6 (December 2021)
[article]
Titre : Understanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Jing Li, Auteur Année de publication : 2021 Article en page(s) : pp 3025 - 3047 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] outil d'aide à la décision
[Termes IGN] quartier
[Termes IGN] réseau de transport
[Termes IGN] risque sanitaire
[Termes IGN] surveillance sanitaireRésumé : (Auteur) In order to find useful intervention strategies for the novel coronavirus (COVID-19), it is vital to understand how the disease spreads. In this study, we address the modeling of COVID-19 spread across space and time, which facilitates understanding of the pandemic. We propose a hybrid data-driven learning approach to capture the mobility-related spreading mechanism of infectious diseases, utilizing multi-sourced mobility and attributed data. This study develops a visual analytic approach that identifies and depicts the strength of the transmission pathways of COVID-19 between areal units by integrating data-driven deep learning and compartmental epidemic models, thereby engaging stakeholders (e.g., public health officials, managers from transportation agencies) to make informed intervention decisions and enable public messaging. A case study in the state of Colorado, USA was performed to demonstrate the applicability of the proposed transmission modeling approach in understanding the spatio-temporal spread of COVID-19 at the neighborhood level. Transmission path maps are presented and analyzed, demonstrating their utility in evaluating the effects of mitigation measures. In addition, integrated embeddings also support daily prediction of infected cases and role analysis of each area unit during the transmission of the virus. Numéro de notice : A2021-932 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12803 Date de publication en ligne : 16/07/2021 En ligne : https://doi.org/10.1111/tgis.12803 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99447
in Transactions in GIS > vol 25 n° 6 (December 2021) . - pp 3025 - 3047[article]High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado / Mustafa Serkan Işık in Journal of geodesy, vol 95 n° 5 (May 2021)
[article]
Titre : High-resolution geoid modeling using least squares modification of Stokes and Hotine formulas in Colorado Type de document : Article/Communication Auteurs : Mustafa Serkan Işık, Auteur ; Bihter Erol, Auteur ; Serdar Erol, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] correction
[Termes IGN] géoïde local
[Termes IGN] intégrale de Stokes
[Termes IGN] levé gravimétrique
[Termes IGN] matrice de covariance
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de géopotentiel
[Termes IGN] modèle mathématique
[Termes IGN] montagne
[Termes IGN] nivellement
[Termes IGN] système de référence altimétriqueRésumé : (auteur) The Colorado geoid experiment was initiated and organized as a joint study by the Joint Working Group (JWG) 2.2.2 (1-cm geoid experiment) of the International Association of Geodesy (IAG) in 2017, and different institutions and research groups contributed to this study. The aim of this experiment was to clarify the repeatability of gravity potential values as International Height Reference System (IHRS) coordinates from different geoid determination approaches carried out with the same input dataset. The dataset included the terrestrial and airborne gravity observations, a digital terrain model, the XGM2016 global geopotential model and GPS/leveling data for model validations belonging to a mountainous area of approximately 550 km × 730 km in Colorado, US. The dataset was provided by National Geodetic Survey (NGS) department. In this frame, this article aims providing a discussion on Colorado geoid modeling through individual experimental results obtained by Istanbul Technical University-Gravity Research Group (ITU-GRG). This contribution mainly focused on modeling the Colorado geoid using the least squares modifications of Stokes and Hotine integral formulas with additive corrections. The computations using each formula were carried out using ITU-GRG software, including the solution variants based on terrestrial-only, airborne-only and combined gravity datasets. Then, the calculated experimental geoid models were validated using historical and recently measured profile-based GPS/leveling datasets, and they were also compared with the official solutions submitted by different institutions for the “1-cm geoid experiment” of IAG JWG 2.2.2. For all validation results, the Hotine and Stokes integral formulas yielded similar performances in terms of geoid accuracy; however, the models computed using the combined data had better accuracy than those using the terrestrial-only and airborne-only solutions. The geoid model solutions using the combined data had an accuracy of 2.69 cm for the Hotine method and 2.87 cm for the Stokes method in the test results using GPS/leveling data of the GSVS17 (Geoid Slope Validation Survey 2017) profile. Airborne data from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project contributed significantly towards improving the geoid model, especially in the mountainous parts of the area. Numéro de notice : A2021-311 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01501-z Date de publication en ligne : 07/04/2021 En ligne : https://doi.org/10.1007/s00190-021-01501-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97503
in Journal of geodesy > vol 95 n° 5 (May 2021) . - n° 49[article]Fully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
[article]
Titre : Fully convolutional neural network for impervious surface segmentation in mixed urban environment Type de document : Article/Communication Auteurs : Joseph McGlinchy, Auteur ; Brian Muller, Auteur ; Brian Johnson, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] croissance urbaine
[Termes IGN] Denver
[Termes IGN] exactitude des données
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] milieu urbain
[Termes IGN] segmentation
[Termes IGN] surface imperméableRésumé : (Auteur) The urgency of creating appropriate, high-resolution data products such as impervious cover information has increased as cities face rapid growth as well as climate change and other environmental challenges. This work explores the use of fully convolutional neural networks (FCNNs )—specifically UNet with a ResNet-152 encoder—in mapping impervious surfaces at the pixel level from WorldView-2 in a mixed urban/residential environment. We investigate three-, four-, and eight-band multispectral inputs to the FCNN. Resulting maps are promising in both qualitative and quantitative assessment when compared to automated land use/land cover products. Accuracy was assessed by F1 and average precision (AP) scores, as well as receiver operating characteristic curves, with area under the curve (AUC ) used as an additional accuracy metric. The four-band model shows the highest average test-set accuracies (F1, AP, and AUC of 0.709, 0.82, and 0.807, respectively), with higher AP and AUC than the automated land use/land cover products, indicating the utility of the blue-green-red-infrared channels for the FCNN. Improved performance was seen in residential areas, with worse performance in more densely developed areas. Numéro de notice : A2021-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.2.117 Date de publication en ligne : 01/02/2021 En ligne : https://doi.org/10.14358/PERS.87.2.117 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97045
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 2 (February 2021) . - pp 117 - 123[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021021 SL Revue Centre de documentation Revues en salle Disponible Modeling land use change and forest carbon stock changes in temperate forests in the United States / Lucia Fitts in Carbon Balance and Management, vol 16 ([01/02/2021])
[article]
Titre : Modeling land use change and forest carbon stock changes in temperate forests in the United States Type de document : Article/Communication Auteurs : Lucia Fitts, Auteur ; Matthew B. Russell, Auteur ; Grant M. Domke, Auteur ; Joseph F. Knight, Auteur Année de publication : 2021 Article en page(s) : n° 20 (2021) Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] forêt tempérée
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] impact sur l'environnement
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] puits de carbone
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Wisconsin (Etats-Unis)
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Background : Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Service Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topography, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were used to produce wall-to-wall probability maps of forest change using Google Earth Engine.
Results : During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of aboveground C lost. Natural forest disturbances were not a major predictor of land use change.
Conclusions : Land use change is accelerating globally, causing a large increase in C emissions. Our results will help policy-makers prioritize forest management activities and land use planning by providing a quantitative framework that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by understanding the role that land use change plays in C emissions.Numéro de notice : A2021-501 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article DOI : 10.1186/s13021-021-00183-6 Date de publication en ligne : 03/07/2021 En ligne : https://doi.org/10.1186/s13021-021-00183-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98099
in Carbon Balance and Management > vol 16 [01/02/2021] . - n° 20 (2021)[article]Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment / Martin Willberg in Journal of geodesy, vol 94 n° 8 (August 2020)PermalinkDelineating minor landslide displacements using GPS and terrestrial laser scanning-derived terrain surfaces and trees: a case study of the Slumgullion landslide, Lake City, Colorado / Jin Wang in Survey review, vol 52 n° 372 (May 2020)PermalinkRadar interferometry of unstable slopes / Theeba Raveendran (2020)PermalinksUAS-based remote rensing of river discharge using thermal particle image velocimetry and bathymetric lidar / Paul J. Kinzel in Remote sensing, vol 11 n° 19 (October-1 2019)PermalinkGeostatistical methods for predicting soil moisture continuously in a subalpine basin / Katherine E. Williams in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 4 (April 2014)PermalinkThe electronically steerable flash Lidar : A full waveform scanning system for topographic and ecosystem structure applications / H. Duong in IEEE Transactions on geoscience and remote sensing, vol 50 n° 11 Tome 2 (November 2012)PermalinkA volumetric approach to population estimation using lidar remote sensing / Zhong Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 77 n° 11 (November 2011)PermalinkOrthoimage creation of extremely high buildings / Guoqing Zhou in IEEE Transactions on geoscience and remote sensing, vol 46 n° 12 (December 2008)PermalinkDeriving new minimum cost pathways from existing paths / Denis J. Dean in Cartography and Geographic Information Science, vol 32 n° 1 (January 2005)PermalinkTrue orthoimage generation in urban areas with very tall buildings / Guoqing Zhou in International Journal of Remote Sensing IJRS, vol 25 n° 22 (November 2004)Permalink