Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > compensation
compensation |
Documents disponibles dans cette catégorie (265)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Enabling RTK positioning under jamming: Mitigation of carrier-phase distortions induced by blind spatial filtering / Tobias Bamberg in Navigation : journal of the Institute of navigation, vol 70 n° 1 (Spring 2023)
[article]
Titre : Enabling RTK positioning under jamming: Mitigation of carrier-phase distortions induced by blind spatial filtering Type de document : Article/Communication Auteurs : Tobias Bamberg, Auteur ; A. Konovaltsev, Auteur ; Michael Meurer, Auteur Année de publication : 2023 Article en page(s) : n° 556 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] brouillage
[Termes IGN] compensation
[Termes IGN] erreur de phase
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage du signal
[Termes IGN] interférence
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] signal GNSSRésumé : (auteur) New GNSS applications demand resilience against radio interference and high position accuracy. Separately, these demands can be fulfilled by multi-antenna systems using spatial filtering and carrier-phase positioning algorithms like real-time kinematic (RTK), respectively. However, combining these approaches encounters a severe issue: The spatial filtering induces a phase offset into the measured carrier phase leading to a loss of position accuracy. This paper presents a new approach to compensate for the phase offset in a blind manner, (i.e., without knowing the antenna array radiation pattern or the direction of arrival of the signals). The proposed approach is experimentally validated in two jamming scenarios. One includes a jammer with increasing power and the other includes a moving jammer. The results demonstrate that the approach successfully compensates for the phase offset and, hence, allows for the combined use of RTK positioning and spatial filtering even under jamming. Numéro de notice : A2023-140 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.33012/navi.556 Date de publication en ligne : 09/08/2022 En ligne : https://doi.org/10.33012/navi.556 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102703
in Navigation : journal of the Institute of navigation > vol 70 n° 1 (Spring 2023) . - n° 556[article]Effects of offsets and outliers on the sea level trend at Antalya 2 tide gauge within the Eastern Mediterranean Sea / Mehmet Emin Ayhan in Marine geodesy, vol 45 n° 4 (July 2022)
[article]
Titre : Effects of offsets and outliers on the sea level trend at Antalya 2 tide gauge within the Eastern Mediterranean Sea Type de document : Article/Communication Auteurs : Mehmet Emin Ayhan, Auteur Année de publication : 2022 Article en page(s) : pp 329 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] autocorrélation
[Termes IGN] compensation
[Termes IGN] données marégraphiques
[Termes IGN] Méditerranée, mer
[Termes IGN] modèle statistique
[Termes IGN] niveau de la mer
[Termes IGN] niveau moyen des mers
[Termes IGN] Turquie
[Termes IGN] valeur aberrante
[Termes IGN] variation saisonnière
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Antalya 2 tide gauge (TG) station is located on the coast of Turkey within the Eastern Mediterranean Sea. Relative sea level trends 6.0 ± 1.5 and 6.44 ± 0.45 mm/year over 1985–2009 at Antalya 2 TG are different from the trend (1.6 ± 1.5 mm/year over 1935–1977) at Antalya TG within 10 km. In order to investigate this trend discrepancy, the monthly mean series at Antalya 2 TG is re-analyzed for offsets, outliers and trend estimation. The Zivot-Andrews method and the Qp outlier test result in one offset at 1994.0417 year with magnitude of 71.24 ± 13.48 mm and nine outliers. The series, corrected for the offset and outliers, de-seasonalized and filled for missed points, is identified as trend-stationary process and analyzed for trend estimation by various models. The optimal model providing the lowest Akaike Information Criteria is polynomial linear trend with multiplicative seasonal Autoregressive Moving Average (ARMA(2,0)x(1,0)12). The estimated relative sea level trend by the optimal model is 1.77 ± 0.65 mm/year. The large trend discrepancy at Antalya 2 TG is accounted for by one offset primarily (∼71%) and nine outliers (∼3%). Numéro de notice : A2022-516 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/01490419.2022.2047843 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/01490419.2022.2047843 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101064
in Marine geodesy > vol 45 n° 4 (July 2022) . - pp 329 - 359[article]Accuracy issues for spatial update of digital cadastral maps / David Pullar in ISPRS International journal of geo-information, vol 11 n° 4 (April 2022)
[article]
Titre : Accuracy issues for spatial update of digital cadastral maps Type de document : Article/Communication Auteurs : David Pullar, Auteur ; Stephen Donaldson, Auteur Année de publication : 2022 Article en page(s) : n° 221 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cadastre étranger
[Termes IGN] Australie
[Termes IGN] base de données foncières
[Termes IGN] compensation
[Termes IGN] données cadastrales
[Termes IGN] lever cadastral
[Termes IGN] méthode des moindres carrés
[Termes IGN] mise à jour
[Termes IGN] parcelle cadastrale
[Termes IGN] plan parcellaire
[Termes IGN] précision des donnéesRésumé : (auteur) All geospatial data are updated periodically. Cadastral parcel mapping, however, has special update requirements that set it apart from other geospatial data. Mapped boundaries change continuously to fit with new survey plans. Additionally, new parcels have to be fitted and aligned with adjoining parcels to merge them into existing cadastral mapping. This is preferably performed by a spatial adjustment approach to systematically improve its accuracy over time. This paper adapts methods for analysis and adjustment of survey networks to improve the accuracy of cadastral mapping with better coordinate positioning and survey plan dimensions. Case studies for both hypothetical and real cadastral mapping are used to illustrate the issues and spatially resolve errors. Adjustment results achieve an accuracy consistent with other GIS layers and boundary features visible in high-resolution orthoimagery. Graphical charts based on stress–strain relationships provide a simplified means to interpret post-adjustment results to identify and fix potential errors. Numéro de notice : A2022-447 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11040221 Date de publication en ligne : 24/03/2022 En ligne : https://doi.org/10.3390/ijgi11040221 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100305
in ISPRS International journal of geo-information > vol 11 n° 4 (April 2022) . - n° 221[article]Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method / Hongliang Lu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
[article]
Titre : Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method Type de document : Article/Communication Auteurs : Hongliang Lu, Auteur ; Heng Zhang, Auteur ; Huaitao Fan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 99 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande P
[Termes IGN] Chine
[Termes IGN] compensation
[Termes IGN] erreur de mesure
[Termes IGN] erreur de phase
[Termes IGN] Guyane (département français)
[Termes IGN] hauteur des arbres
[Termes IGN] image radar moirée
[Termes IGN] ligne de base
[Termes IGN] polarisation
[Termes IGN] tomographie radar
[Termes IGN] triangulation de DelaunayRésumé : (auteur) Synthetic aperture radar (SAR) tomography (TomoSAR) has been well-established for three-dimensional (3-D) information extraction of forests using the multi-baseline SAR data stacks. The multi-baseline SAR data stacks can be acquired by spaceborne and airborne SAR systems, but for forest scenarios, the data stacks acquired by the airborne SAR system are mostly used. Such a data stack has the advantages of short revisiting time and weak temporal decorrelation. However, due to the baseline errors (caused by the residual platform motion and the measurement errors of the navigation instruments), phase errors (PEs) will occur. PEs are independent of one track to the other, resulting in spreading and defocusing in tomographic imaging. In this paper, we proposed a novel phase compensation method named NC-PGA, which combines the methods of network construction (NC) and phase gradient autofocus (PGA) to estimate and compensate the PEs. The NC method uses the Delaunay triangulation network and beamforming to obtain an accurate elevation estimate of the selected permanent scatterers, which can be used as the prior information for subsequent processing to overcome the shortcomings of the PGA method in PEs estimation. The PGA method uses the spatial invariance of PEs in a limited area to compensate for the PE of each track. The applicability of the NC-PGA method is demonstrated using simulated data and real data. The real data contains two data stacks. The one is acquired by a full-polarization P-band airborne SAR system (developed independently by our project research team) over the study area in Saihanba Forest Farm in Hebei, China. The other one is acquired by ONERA SETHI airborne system over Paracou, French Guiana, in the frame of the European Space Agency’s campaign TropiSAR. We select a test area in the study area and successfully retrieve the height of the forest, and use LiDAR data for results validation and evaluation. Numéro de notice : A2021-271 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.022 Date de publication en ligne : 14/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97329
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 99 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021051 SL Revue Centre de documentation Revues en salle Disponible 081-2021052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 081-2021053 DEP-RECP Revue Saint-Mandé Dépôt en unité Exclu du prêt Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction / Wanli Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
[article]
Titre : Compensation of geometric parameter errors for terrestrial laser scanner by integrating intensity correction Type de document : Article/Communication Auteurs : Wanli Liu, Auteur ; Shuaishuai Sun, Auteur ; Zhixiong Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7483 - 7495 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse harmonique
[Termes IGN] angle d'incidence
[Termes IGN] compensation
[Termes IGN] erreur de mesure
[Termes IGN] erreur géométrique
[Termes IGN] erreur instrumentale
[Termes IGN] fonction spline d'interpolation
[Termes IGN] modèle mathématique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) The accuracy of geometric parameters (mainly referred to the incidence angle and measuring distance) in a terrestrial laser scanner (TLS) is not only influenced by the TLS intrinsic systematic instrumental error but also the extrinsic received intensity data. However, the current error compensation methods for geometric parameters mainly focus on the calibration of TLS intrinsic systematic instrumental error and rarely consider the extrinsic intensity data correction. For this reason, this article presents a new method integrating the TLS intrinsic systematic instrumental error calibration and extrinsic intensity data correction to compensate the TLS geometric parameter error. The error compensation procedure is implemented as follows. First, the error compensation mathematical model integrated with TLS intrinsic systematic instrumental error calibration parameters and extrinsic intensity data correction coefficient is established. Second, the hybrid harmonic analysis (HA) and the adaptive wavelet neural network (AWNN) algorithm are proposed to calculate the TLS incidence angle error compensation values. Subsequently, the cubic spline interpolation (CSI) is applied to compute the measuring distance error compensate values. Finally, the TLS (model FARO Focus S150) and the hemispherical angle calibration instrument were used to evaluate the proposed compensation method. The experimental results demonstrate that the geometric parameters are significantly influenced by the intensity data received from TLS, and the proposed method can effectively improve the overall accuracy of the TLS incidence angle and measuring distance. Numéro de notice : A2020-602 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984885 Date de publication en ligne : 15/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95957
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7483 - 7495[article]Background tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September-2 2020)PermalinkTrajectory drift–compensated solution of a stereo RGB-D mapping system / Shengjun Tang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 6 (June 2020)PermalinkPermalinkPermalinkSparse signal modeling: Application to image compression, Image error concealment and compressed sensing / Ali Akbari (2018)PermalinkNew adjustment of the Croatian first order gravity network / Marija Repanic in Geodetski vestnik, vol 61 n° 4 (December 2017 - February 2018)PermalinkExtrapolated georeferencing of high-resolution satellite imagery based on the strip constraint / Jinshan Cao in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 7 (July 2017)PermalinkRigorous strip adjustment of UAV-based laserscanning data including time-dependent correction of trajectory errors / Philipp Glira in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 12 (December 2016)PermalinkEstimation of satellite antenna phase center offsets for Galileo / Peter Steigenberger in Journal of geodesy, vol 90 n° 8 (August 2016)PermalinkAutomated bias-compensation approach for pushbroom sensor modeling using digital elevation model / Kwan-Young Oh in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)Permalink