Descripteur
Documents disponibles dans cette catégorie (98)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Attributing pedestrian networks with semantic information based on multi-source spatial data / Xue Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
[article]
Titre : Attributing pedestrian networks with semantic information based on multi-source spatial data Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Kathleen Stewart, Auteur ; Mengyuan Fang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 31 - 54 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] extraction de données
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] ondelette
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du sol
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The lack of associating pedestrian networks, i.e. the paths and roads used for non-vehicular travel, with information about semantic attribution is a major weakness for many applications, especially those supporting accurate pedestrian routing. Researchers have developed various algorithms to generate pedestrian walkways based on datasets, including high-resolution images, existing map databases, and GPS data; however, the semantic attribution of pedestrian walkways is often ignored. The objective of our study is to automatically extract semantic information including incline values and the different categories of pedestrian paths from multi-source spatial data, such as crowdsourced GPS tracking data, land use data, and motor vehicle road (MVR) networks. Incline values for each pedestrian path were derived from tracking data through elevation filtering using wavelet theory and a similarity-based map-matching method. To automatically categorize pedestrian paths into five classes including sidewalk, crosswalk, entrance walkway, indoor path, and greenway, we developed a hierarchical strategy of spatial analysis using land use data and MVR networks. The effectiveness of our proposed method is demonstrated using real datasets including GPS tracking data collected by volunteers, land use data acquired from OpenStreetMap, and MVR network data downloaded from Gaode Map. Numéro de notice : A2022-083 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1902530 En ligne : https://doi.org/10.1080/13658816.2021.1902530 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99480
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 31 - 54[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022011 SL Revue Centre de documentation Revues en salle Disponible Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Qingqing Zhao, Auteur ; Jiayue Zhuang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 10394 - 10409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gabor-based superpixel-level unsupervised linear discriminant analysis (FG- Su ULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial–spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called Su ULDA, is skillfully introduced to reduce the extracted large amount of FG features. The Su ULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG- Su ULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG- Su ULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility. Numéro de notice : A2021-872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3048994 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3048994 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99131
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10394 - 10409[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] échantillonnage
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] ondelette
[Termes IGN] regroupement de données
[Termes IGN] superpixelRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 79 - 94[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt
Titre : Wavelet theory Type de document : Monographie Auteurs : Somayeh Mohammady, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2021 Importance : 398 p. Format : 19 x 27 cm ISBN/ISSN/EAN : 978-1-83881-955-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] filtrage du bruit
[Termes IGN] ondelette de Haar
[Termes IGN] traitement du signal
[Termes IGN] transformation de Fourier
[Termes IGN] transformation en ondelettesRésumé : (éditeur) The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior. Note de contenu : 1- Time Frequency Analysis of Wavelet and Fourier Transform
2- Wavelet Theory: Applications of the Wavelet
3- Wavelet Theory and Application in Communication and Signal Processing
4- Wavelet Based Multicarrier Modulation (MCM) Systems: PAPR Analysis
5- Wavelets for EEG Analysis
6- Ultra-High Performance and Low-Cost Architecture of Discrete Wavelet Transforms
7- Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis
8- Industrial IoT Using Wavelet Transform
9- Wavelet Transform for Signal Processing in Internet-of-Things (IoT)
10- The Discrete Quincunx Wavelet Packet Transform
11- Uncertainty and the Oracle of Market Returns: Evidence from Wavelet Coherence Analysis
12- Case Study: Coefficient Training in Paley-Wiener Space, FFT, and Wavelet Theory
13- Wavelet Filter Banks Using Allpass Filters
14- A Wavelet Threshold Function for Treatment of Partial Discharge Measurements
15- Use of Daubechies Wavelets in the Representation of Analytical Functions
16- Higher Order Haar Wavelet Method for Solving Differential Equations
17- COVID-19 Outbreak and Co-Movement of Global Markets: Insight from Dynamic Wavelet Correlation AnalysisNuméro de notice : 28316 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.87895 En ligne : https://doi.org/10.5772/intechopen.87895 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98235 Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis Type de document : Article/Communication Auteurs : David Solarna, Auteur ; Alberto Gotelli, Auteur ; Jacqueline Le Moigne, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6039 - 6058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cratère
[Termes IGN] détection de contours
[Termes IGN] distance de Hausdorff
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multitemporelle
[Termes IGN] image thermique
[Termes IGN] Mars (planète)
[Termes IGN] ondelette
[Termes IGN] processus ponctuel marqué
[Termes IGN] séparateur à vaste marge
[Termes IGN] transformation de Hough
[Termes IGN] zone d'intérêtRésumé : (auteur) Because of the large variety of planetary sensors and spacecraft already collecting data and with many new and improved sensors being planned for future missions, planetary science needs to integrate numerous multimodal image sources, and, as a consequence, accurate and robust registration algorithms are required. In this article, we develop a new framework for crater detection based on marked point processes (MPPs) that can be used for planetary image registration. MPPs were found to be effective for various object detection tasks in Earth observation, and a new MPP model is proposed here for detecting craters in planetary data. The resulting spatial features are exploited for registration, together with fitness functions based on the MPP energy, on the mean directed Hausdorff distance, and on the mutual information. Two different methods—one based on birth–death processes and region-of-interest analysis and the other based on graph cuts and decimated wavelets—are developed within the proposed framework. Experiments with a large set of images, including 13 thermal infrared and visible images of the Mars surface, 20 semisimulated multitemporal pairs of images of the Mars surface, and a real multitemporal image pair of the Lunar surface, demonstrate the effectiveness of the proposed framework in terms of crater detection performance as well as for subpixel registration accuracy. Numéro de notice : A2020-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2970908 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2970908 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95704
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6039 - 6058[article]Improved wavelet neural network based on change rate to predict satellite clock bias / Xu Wang in Survey review, vol 52 n° 372 (May 2020)PermalinkEvaluation of the high-rate GNSS-PPP method for vertical structural motion / Mosbeh R. Kaloop in Survey review, vol 52 n° 371 (March 2020)PermalinkImage processing applications in object detection and graph matching: from Matlab development to GPU framework / Beibei Cui (2020)PermalinkINS/GNSS integration using recurrent fuzzy wavelet neural networks / Parisa Doostdar in GPS solutions, vol 24 n° 1 (January 2020)PermalinkGeospatial data organization methods with emphasis on aperture-3 hexagonal discrete global grid systems / Ali Mahdavi Amiri in Cartographica, vol 54 n° 1 (Spring 2019)PermalinkPermalinkMéthodes d'apprentissage statistique pour la détection de la signalisation routière à partir de véhicules traceurs / Yann Méneroux (2019)PermalinkDenoising of natural images through robust wavelet thresholding and genetic programming / Asem Khmag in The Visual Computer, vol 33 n°9 (September 2017)PermalinkWREP : A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops / Dong Li in ISPRS Journal of photogrammetry and remote sensing, vol 129 (July 2017)PermalinkMulti-scale modeling of Earth's gravity field in space and time / Shuo (2) Wang in Journal of geodynamics, vol 106 (May 2017)Permalink