Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie spatiale > traitement de données GNSS > signal GNSS > signal Galileo
signal GalileoVoir aussi |
Documents disponibles dans cette catégorie (52)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
GNSS carrier phase time-variant observable-specific signal bias (OSB) handling: an absolute bias perspective in multi-frequency PPP / Ke Su in GPS solutions, vol 26 n° 3 (July 2022)
[article]
Titre : GNSS carrier phase time-variant observable-specific signal bias (OSB) handling: an absolute bias perspective in multi-frequency PPP Type de document : Article/Communication Auteurs : Ke Su, Auteur ; Shuanggen Jin, Auteur ; Guoqiang Jiao, Auteur Année de publication : 2022 Article en page(s) : n° 71 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précision du positionnement
[Termes IGN] signal BeiDou
[Termes IGN] signal Galileo
[Termes IGN] temps de convergenceRésumé : (auteur) In precise satellite clock estimation, the satellite clock offsets absorb the pseudorange and carrier phase time-variant hardware delays. The dissimilarity of the satellite clock estimated with observations at different frequencies is termed the inter-frequency clock bias (IFCB). The bias inconsistency suggests that the simple ionospheric-free satellite clock cannot directly be applied to the multi-frequency carrier phase observations in multi-frequency precise point positioning (PPP). We propose the carrier phase time-variant observable-specific signal bias (OSB) concept and the corresponding estimation approach to solve this. The definition, rationality, reliability and validity of the carrier phase time-variant OSB are clarified. The new concept advantage is that a set of the carrier phase time-variant OSB values can directly amend on the carrier phase observations, and thereafter, the IFCB effect can be eliminated, which provides the flexibilities for the GNSS carrier phase observation handing. Datasets collected from 144 Multi-GNSS Experiment (MGEX) stations are adopted for the carrier phase time-variant OSB estimation and an analysis of its effect on the GNSS multi-frequency PPP performance. The various multi-frequency PPP models are tested and evaluated considering the carrier phase time-variant OSB correction. The results indicate that the GPS, BDS-2 and BDS-3 carrier phase time-variant OSB time series have the obvious amplitudes and the amplitudes of the Galileo and QZSS carrier phase time-variant OSB are small. The GPS and BDS-2 multi-frequency PPP performance is significantly enhanced when correcting the carrier phase time-variant OSB. The GPS-only kinematic ionospheric-float PPP exhibits the positioning accuracy of 1.0 cm, 2.2 cm and 2.6 cm in the north, east and up components when correcting the carrier phase time-variant OSB, whereas the positioning accuracy of the case without the correction is 1.4 cm, 2.8 cm and 3.7 cm in three directions, respectively. The mean convergence time of two dual-frequency and three triple-frequency BDS-2-only kinematic PPP is reduced by 5.0%, 4.9%, 5.4%, 4.7% and 4.6%, respectively, with the carrier phase time-variant OSB correction. The carrier phase time-variant OSB improvement on BDS-3-only multi-frequency PPP is not obvious owing to the relatively few available and stable carrier phase time-variant OSB values. The reliability, suitability and effectiveness of the GNSS carrier phase time-variant OSB are demonstrated. Numéro de notice : A2022-360 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-022-01255-x Date de publication en ligne : 22/04/2022 En ligne : https://doi.org/10.1007/s10291-022-01255-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100579
in GPS solutions > vol 26 n° 3 (July 2022) . - n° 71[article]Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences / Jiang Guo in GPS solutions, vol 25 n° 2 (April 2021)
[article]
Titre : Impact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences Type de document : Article/Communication Auteurs : Jiang Guo, Auteur ; Jianghui Geng, Auteur ; Chen Wang, Auteur Année de publication : 2021 Article en page(s) : 12 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] bruit (théorie du signal)
[Termes IGN] fréquence multiple
[Termes IGN] ligne de base
[Termes IGN] mesurage de pseudo-distance
[Termes IGN] modèle fonctionnel
[Termes IGN] modèle stochastique
[Termes IGN] phase
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal BeiDou
[Termes IGN] signal Galileo
[Termes IGN] signal GNSS
[Termes IGN] temps de convergenceRésumé : (Auteur) New GNSS signals have significantly augmented positioning service and promoted algorithmic innovations such as rapid PPP convergence. With the emerging of multifrequency signals, it becomes essential to thoroughly explore the contribution of third frequency pseudorange and carrier phase toward PPP. In this study, we research the role of the third frequency observations on accelerating PPP convergence, commencing from both stochastic and functional models. We first constructed the stochastic model depending on the observation noise and then introduced two uncombined functional models with respect to different inter-frequency bias (IFB) estimation strategies. The double-differenced residuals based on a zero baseline were used to evaluate the signal noises, which were 0.09, 0.07, 0.11, 0.01 and 0.09 m for Galileo E1/E5a/E5b/E5/E6 pseudorange and 0.24, 0.31 and 0.05 m for BeiDou B1/B2/B3. Besides, carrier phase observations E5a/E5/E6/B1I/B3I shared a comparable signal noise of 0.002 m, while the signal noises of E1/E5b/B2I were 0.003 m. Both BeiDou-2/Galileo and Galileo-only float PPP were implemented based on the dataset collected from 25 stations, spanning 30 days. Triple-frequency Galileo PPP achieved convergence successfully in 19.9 min if observations were weighted according to observation precision, showing a comparable performance of dual-frequency PPP. Meanwhile, the convergence time of triple-frequency float PPP was further shortened to 19.2 min when satellite pair IFBs were eliminated by estimating a second satellite clock. While the improvement of triple-frequency float PPP was marginal, triple-frequency PPP-AR using signals E1/E5a/E6 shortened the initialization time of the dual-frequency counterpart by 38%. Moreover, the performance of triple-frequency PPP-AR kept almost unchanged after we excluded the third frequency pseudorange observations. We thus suggest that the contribution of the third frequency to PPP mainly rests on ambiguity resolution, favored by the additional carrier phase observations. Numéro de notice : A2021-090 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01079-7 Date de publication en ligne : 10/01/2021 En ligne : https://doi.org/10.1007/s10291-020-01079-7 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96875
in GPS solutions > vol 25 n° 2 (April 2021) . - 12 p.[article]
Titre : GNSS/5G Hybridization for Urban Navigation Type de document : Thèse/HDR Auteurs : Anne-Marie Tobie, Auteur ; Axel Javier Garcia Pena, Directeur de thèse ; Paul Thevenon, Directeur de thèse Editeur : Toulouse : Université Fédérale Toulouse Midi-Pyrénées Année de publication : 2021 Importance : 287 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de l'Université de Toulouse, Spécialité Informatique et TélécommunicationsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] 4G
[Termes IGN] 5G
[Termes IGN] bruit blanc
[Termes IGN] GNSS assisté pour la navigation
[Termes IGN] milieu urbain
[Termes IGN] modèle mathématique
[Termes IGN] positionnement en intérieur
[Termes IGN] positionnement par GNSS
[Termes IGN] signal Galileo
[Termes IGN] signal GPS
[Termes IGN] simulation de signal
[Termes IGN] temps de propagation
[Termes IGN] trajet multipleIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Over the past few years, the need for positioning, and thus the number of positioning services in general, has been in constant growth. This need for positioning has been increasingly focused on constrained environments, such as urban or indoor environments, where GNSS (Global Navigation Satellite System) is known to have significant limitations: multipath as well as the lack of Line-of-Sight (LOS) satellite visibility degrades the GNSS positioning solution and makes it unsuitable for some urban or indoor applications. In order to improve the GNSS positioning performance in constrained environments, many solutions are already available: hybridization with additional sensors, [1], [2] or the use of signals of opportunity (SoO) for example, [3], [4], [5], [6], [7], [8]. Concerning SoO, mobile communication signals, such as the 4G Long Term Evolution (LTE) or 5G, are naturally envisioned for positioning, [3], [9], [10]. Indeed, a significant number of users are expected to be “connected-users” and 5G systems offers promising opportunities. 5G technology is being standardized at 3GPP [11]; the first complete release of 5G specifications, Release-15, was provided to the community in March 2018. 5G is an emerging technology and its positioning performance, as well as a potential generic receiver scheme to conduct positioning operations, is still under analysis. In order to study the potential capabilities provided by 5G systems and to develop a 5G-based generic positioning module scheme, the first fundamental step is to develop mathematical models of the processed 5G signals at each stage of the receiver for realistic propagation channel models: the mathematical expression of the useful received 5G signal as well as the AWG (Additive White Gaussian) noise statistics. In the Ph.D., the focus is given to the correlation operation which is the basic function implemented by typical ranging modules for 4G LTE signals [12], DVB signals [7], [8], and GNSS [13]. In fact, the knowledge of the correlation output mathematical model could allow for the development of optimal 5G signal processing techniques for ranging positioning. Previous efforts were made to provide mathematical models of received signals at the different receiver signal processing stages for signals with similar structures to 5G signals – Orthogonal Frequency Division Multiplexing (OFDM) signals as defined in 3GPP standard, [14]. OFDM signal-type correlator output mathematical model and acquisition techniques were derived in [7], [15]. Moreover, in [8], [15], tracking techniques were proposed, analyzed and tested based on the correlator output mathematical model of [7]. However, these models were derived by assuming a constant propagation channel over the duration of the correlation. Unfortunately, when the Channel Impulse Response (CIR) provided by a realistic propagation channel is not considered to be constant over the duration of the correlation, the correlator output mathematical models are slightly different from the mathematical models proposed in [7], [8]. Therefore, the first main point considered in the Ph.D. consists in the development of mathematical models and statistics of processed 5G signals for positioning. In order to derive accurate mathematical models, the time evolution impact of the 5G standard compliant propagation channel is of the utmost importance. Note that, in the Ph.D., the continuous CIR will be approximated by a discretized CIR, and the continuous time-evolution will be replaced by the propagation channel generation sampling rate notion. This approximation makes sense since, in a real transmission/reception chain, the received time-continuous signal is, at the output of the Radio-Frequency (RF) front-end, sampled. Therefore, a preliminary step, prior to derive accurate mathematical models of processed 5G signals, consists in determining the most suitable CIR-generation sampling interval for a selected 5G standard compliant propagation channel, QuaDRiGa: trade-off between having a realistic characterization and its complexity. Complexity is especially important for 5G compliant channels with multiple emitter and receiver antennas, and high number of multipath. Then, the impact of a time-evolving propagation channel inside an OFDM symbol duration is studied. A method to select the most appropriate CIR sampling interval for accurate modelling of symbol demodulation, correlator outputs and delay tracking will also be proposed. Based on the correlator output mathematical models developed for realistic multipath environments for both GNSS and 5G systems, ranging modules are then developed. These ranging modules outputs the pseudo ranging measurements required to develop navigation solution. In order to improve the positioning availability and GNSS positioning performance in urban environment through the exploitation of 5G signals, both systems, GNSS and 5G communication systems, must be optimally combined. In fact, in order to achieve this optimal combination, both types of signals must be optimally processed, and the mathematical model of their generated pseudo range measurements must be accurately characterized. The second main objective of the Ph.D. aims thus at realistically characterizing GNSS and 5G pseudo range measurement mathematical models and at developing hybrid navigation modules exploiting/adapted to the derived pseudo range measurements mathematical models. In order to validate, the mathematical models developed in the Ph.D., a simulator is designed. The pseudo range measurements mathematical models are derived from a realistic simulator which integrates a typical GNSS receiver processing module and a typical 5G signal processing module proposition; moreover, in order to achieve a realistic characterization, the simulator implements highly realistic propagation channels for GNSS, SCHUN [16], and for 5G, QuaDRiGa [17] is developed. The hybrid navigation modules to be implemented and compared in this work are an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF). The performances of these hybrid navigation modules are then studied to quantify the improvements bringing by 5G TOA measurements. Note de contenu : 1- Introduction
2- GNSS signals, measurement model and positioning
3- 5G systems
4- Mathematical models and statistics of processed 5G signals for ranging based positioning for a realistic propagation channel
5- Synchronization module of a 5G signal
6- Characterization of pseudo range measurement errors due to propagation channels
7- Positioning in urban environment using 5G and GNSS measurements
8- ConclusionNuméro de notice : 26526 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT/URBANISME Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique et Télécommunications : Toulouse : 2021 Organisme de stage : Laboratoire de recherche ENAC nature-HAL : Thèse Date de publication en ligne : 09/04/2021 En ligne : https://hal.science/tel-03189527/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97534 Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations / Pengfei Zhang in GPS solutions, vol 24 n° 2 (April 2020)
[article]
Titre : Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations Type de document : Article/Communication Auteurs : Pengfei Zhang, Auteur ; Rui Tu, Auteur ; Yuping Gao, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] bruit atmosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] fréquence multiple
[Termes IGN] modèle mathématique
[Termes IGN] phase
[Termes IGN] positionnement ponctuel précis
[Termes IGN] signal BeiDou
[Termes IGN] signal Galileo
[Termes IGN] signal GLONASS
[Termes IGN] signal GNSS
[Termes IGN] signal GPS
[Termes IGN] temps-fréquence
[Termes IGN] transmission de donnéesRésumé : (auteur) GNSSs, such as Galileo and modernized GPS, BeiDou and GLONASS systems, offer new potential and challenges in precise time and frequency transfer using multi-frequency observations. We focus on the performance of Galileo time and frequency transfer using the E1, E5a, E5b and E5 observations. Dual-frequency, triple-frequency and quad-frequency models for precise time and frequency transfer with different Galileo observations are proposed. Four time and transfer links between international time laboratories are used to assess the performances of different models in terms of time link noise level and frequency stability indicators. The average RMS values of the smoothed residuals of the clock difference series are 0.033 ns, 0.033 ns and 0.034 ns for the dual-frequency, triple-frequency and quad-frequency models with four time links, respectively. With respect to frequency stability, the average stability values at 15,360 s are 9.51 × 10−15, 9.46 × 10−15 and 9.37 × 10−15 for the dual-frequency, triple-frequency and quad-frequency models with four time links, respectively. Moreover, although biases among different models and receiver the inter-frequency exist, their characteristics are relatively stable. Generally, the dual-/triple-/quad-frequency models show similar performance for those time links, and the quad-frequency models can provide significant potential for switching among and unifying the three multi-frequency solutions, as well as further enhancing the redundancy and reliability compared to the current dual-frequency time transfer method. Numéro de notice : A2020-083 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-0955-7 Date de publication en ligne : 04/02/2020 En ligne : https://doi.org/10.1007/s10291-020-0955-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94652
in GPS solutions > vol 24 n° 2 (April 2020)[article]Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum / Raul Orus Perez in Journal of geodesy, vol 91 n° 4 (April 2017)
[article]
Titre : Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum Type de document : Article/Communication Auteurs : Raul Orus Perez, Auteur Année de publication : 2017 Article en page(s) : pp 397 - 407 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] correction ionosphérique
[Termes IGN] éruption solaire
[Termes IGN] International GNSS Service
[Termes IGN] International Reference Ionosphere
[Termes IGN] modèle ionosphérique
[Termes IGN] récepteur bifréquence
[Termes IGN] récepteur monofréquence
[Termes IGN] retard ionosphèrique
[Termes IGN] signal Galileo
[Termes IGN] signal GPS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity. Numéro de notice : A2017-106 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0971-0 En ligne : http://dx.doi.org/10.1007/s00190-016-0971-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84496
in Journal of geodesy > vol 91 n° 4 (April 2017) . - pp 397 - 407[article]Codeless code tracking of the Galileo E1 PRS / Cillian O'Driscoll in Inside GNSS, vol 12 n° 2 (March - April 2017)PermalinkEstimation and analysis of Galileo differential code biases / Min Li in Journal of geodesy, vol 91 n° 3 (March 2017)PermalinkA statistical characterization of the Galileo-to-GPS inter-system bias / Ciro Gioia in Journal of geodesy, vol 90 n° 11 (November 2016)PermalinkEstimation of satellite antenna phase center offsets for Galileo / Peter Steigenberger in Journal of geodesy, vol 90 n° 8 (August 2016)PermalinkInterference mitigation in the E5A Galileo band using an open-source simulator / Diego Alonso in Inside GNSS, vol 11 n° 4 (July - August 2016)PermalinkListening for RF noise : An analysis of pre-despreading GNSS interference detection techniques / Ali Jafarnia-Jahromi in Inside GNSS, vol 11 n° 3 (May - June 2016)PermalinkGalileo en route vers le GNSS / Bernard Bonhoure in XYZ, n° 144 (septembre - novembre 2015)PermalinkAccuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo / Xinging Li in Journal of geodesy, vol 89 n° 6 (June 2015)PermalinkGalileo E1 and E5a Performance for multi-frequency, multi-constellation GBAS / Mihaela-Simona Circiu in GPS world, vol 26 n° 4 (April 2015)PermalinkEstimating ionospheric delay using GPS/Galileo signals in the E5 band / Olivier Julien in Inside GNSS, vol 10 n° 2 (March - April 2015)Permalink