Descripteur
Documents disponibles dans cette catégorie (24)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Benefits of combining GPS and GLONASS for measuring ocean tide loading displacement / Majid Abbaszadeh in Journal of geodesy, vol 94 n° 7 (July 2020)
[article]
Titre : Benefits of combining GPS and GLONASS for measuring ocean tide loading displacement Type de document : Article/Communication Auteurs : Majid Abbaszadeh, Auteur ; Peter J. Clarke, Auteur Année de publication : 2020 Article en page(s) : n° 63 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] constellation GLONASS
[Termes IGN] données GLONASS
[Termes IGN] données GPS
[Termes IGN] données marégraphiques
[Termes IGN] marée océanique
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement ponctuel précis
[Termes IGN] surcharge océanique
[Termes IGN] trajet multipleRésumé : (auteur) GPS has been used to estimate ocean tide loading (OTL) height displacement amplitudes to accuracies of within 0.5 mm at the M2 frequency, but such estimation has been problematic at luni-solar K2 and K1 frequencies because they coincide with the GPS orbital period and revisit period, leading to repeating multipath and satellite orbit errors. We therefore investigate the potential of using the GLONASS constellation (with orbital period 11.26 h and true site revisit period of 8 sidereal days distinct from K2 and K1) for OTL displacement estimation, analysing 3–7 years of GPS and GLONASS data from 49 globally distributed stations. Using the PANDA software in kinematic precise point positioning mode with float ambiguities, we demonstrate that GLONASS can estimate OTL height displacement at the M2, N2, O1 and Q1 lunar frequencies with similar accuracy to GPS: 95th percentile agreements of 0.6–1.3 mm between estimated and FES2014b ocean tide model displacements. At the K2 and K1 luni-solar frequencies, 95th percentile agreements between GPS estimates and model values of 3.9–4.4 mm improved to 2.0–2.8 mm using GLONASS-only solutions. A combined GPS+GLONASS float solution improves accuracy of the lunar OTL constituents and P1 (but not significantly for K1 or K2) compared with a single-constellation solution and results in hourly-to-weekly spectral noise very similar to a GPS ambiguity-fixed solution, but without needing uncalibrated phase delay information. GLONASS estimates are more accurate at higher compared with lower latitudes because of improved satellite visibility, although this can be countered by using a lower elevation cut-off angle. Numéro de notice : A2020-535 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01393-5 Date de publication en ligne : 08/07/2020 En ligne : https://doi.org/10.1007/s00190-020-01393-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95727
in Journal of geodesy > vol 94 n° 7 (July 2020) . - n° 63[article]Constellations, réseaux permanents, PPP : état des lieux / Laurent Morel in Géomètre, n° 2168 (avril 2019)
[article]
Titre : Constellations, réseaux permanents, PPP : état des lieux Type de document : Article/Communication Auteurs : Laurent Morel, Auteur Année de publication : 2019 Article en page(s) : pp 38 - 43 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] constellation BeiDou
[Termes IGN] constellation Galileo
[Termes IGN] constellation GLONASS
[Termes IGN] constellation GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] réseau géodésique permanent
[Termes IGN] temps réelRésumé : (Auteur) La géolocalisation par GNSS se développe constamment avec les évolutions des constellations, avec la densification des réseaux permanents et avec les nouveaux signaux et l'implémentation de nouveaux algorithmes. L'accumulation de ces progrès a récemment permis au PPP (Precise point positioning) d'offrir une localisation de qualité centimétrique, y compris en temps réel. Numéro de notice : A2019-122 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92428
in Géomètre > n° 2168 (avril 2019) . - pp 38 - 43[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2019041 RAB Revue Centre de documentation En réserve L003 Disponible Assessment of multiple GNSS Real-Time SSR products from different analysis centers / Zhiyu Wang in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Assessment of multiple GNSS Real-Time SSR products from different analysis centers Type de document : Article/Communication Auteurs : Zhiyu Wang, Auteur ; Zishen Li, Auteur ; Liang Wang, Auteur ; Xiaoming Wang, Auteur ; Hong Yuan, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] constellation BeiDou
[Termes IGN] constellation Galileo
[Termes IGN] constellation GLONASS
[Termes IGN] constellation GPS
[Termes IGN] positionnement ponctuel précisRésumé : (Auteur) The real-time State Space Representation (SSR) product of the GNSS (Global Navigation Satellite System) orbit and clock is one of the most essential corrections for real-time precise point positioning (PPP). In this work, the performance of current SSR products from eight analysis centers were assessed by comparing it with the final product and the accuracy of real-time PPP. Numerical results showed that (1) the accuracies of the GPS SSR product were better than 8 cm for the satellite orbit and 0.3 ns for the satellite clock; (2) the accuracies of the GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) SSR product were better than 10 cm for orbit RMS (Root Mean Square) and 0.6 ns for clock STD (Standard Deviation); and (3) the accuracies of the BDS (BeiDou Navigation Satellite System) and Galileo SSR products from CLK93 were about 14.54 and 4.42 cm for the orbit RMS and 0.32 and 0.18 ns for the clock STD, respectively. The simulated kinematic PPP results obtained using the SSR products from CLK93 and CLK51 performed better than those using other SSR products; and the accuracy of PPP based on all products was better than 6 and 10 cm in the horizontal and vertical directions, respectively. The real-time kinematic PPP experiment carried out in Beijing, Tianjin, and Shijiazhuang, China indicated that the SSR product CLK93 from Centre National d’Etudes Spatiales (CNES) had a better performance than CAS01. Moreover, the PPP with GPS + BDS dual systems had a higher accuracy than those with only a GPS single system. Numéro de notice : A2018-096 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030085 En ligne : https://doi.org/10.3390/ijgi7030085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89508
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Dependency of geodynamic parameters on the GNSS constellation / Stefano Scaramuzza in Journal of geodesy, vol 92 n° 1 (January 2018)
[article]
Titre : Dependency of geodynamic parameters on the GNSS constellation Type de document : Article/Communication Auteurs : Stefano Scaramuzza, Auteur ; Rolf Dach, Auteur ; Gerhard Beutler, Auteur ; Daniel Arnold, Auteur ; Andreja Sušnik, Auteur ; Adrian Jäggi, Auteur Année de publication : 2018 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] constellation GLONASS
[Termes IGN] constellation GPS
[Termes IGN] géocentre
[Termes IGN] mouvement du pôle
[Termes IGN] orbite
[Termes IGN] série temporelleRésumé : (Auteur) Significant differences in time series of geodynamic parameters determined with different Global Navigation Satellite Systems (GNSS) exist and are only partially explained. We study whether the different number of orbital planes within a particular GNSS contributes to the observed differences by analyzing time series of geocenter coordinates (GCCs) and pole coordinates estimated from several real and virtual GNSS constellations: GPS, GLONASS, a combined GPS/GLONASS constellation, and two virtual GPS sub-systems, which are obtained by splitting up the original GPS constellation into two groups of three orbital planes each. The computed constellation-specific GCCs and pole coordinates are analyzed for systematic differences, and their spectral behavior and formal errors are inspected. We show that the number of orbital planes barely influences the geocenter estimates. GLONASS’ larger inclination and formal errors of the orbits seem to be the main reason for the initially observed differences. A smaller number of orbital planes may lead, however, to degradations in the estimates of the pole coordinates. A clear signal at three cycles per year is visible in the spectra of the differences between our estimates of the pole coordinates and the corresponding IERS 08 C04 values. Combinations of two 3-plane systems, even with similar ascending nodes, reduce this signal. The understanding of the relation between the satellite constellations and the resulting geodynamic parameters is important, because the GNSS currently under development, such as the European Galileo and the medium Earth orbit constellation of the Chinese BeiDou system, also consist of only three orbital planes. Numéro de notice : A2018-012 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1047-5 En ligne : https://doi.org/10.1007/s00190-017-1047-5 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89055
in Journal of geodesy > vol 92 n° 1 (January 2018) . - pp 93 - 104[article]Positional accuracy control in dense urban environment with low-cost receiver and multi-constellation GNSS / Yann Méneroux (2017)
Titre : Positional accuracy control in dense urban environment with low-cost receiver and multi-constellation GNSS Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Dinesh Manandhar, Auteur ; Saurav Ranjit, Auteur ; Guillaume Saint Pierre, Auteur ; Ryosuke Shibasaki, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2017 Projets : 1-Pas de projet / Conférence : MGA 2017, 9th Multi-GNSS Asia Conference 09/10/2017 11/10/2017 Jakarta Indonésie Importance : 5 p. Note générale : bibliographie
références https://hal.archives-ouvertes.fr/hal-02193751Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] constellation
[Termes IGN] constellation BeiDou
[Termes IGN] constellation GLONASS
[Termes IGN] positionnement par GNSS
[Termes IGN] précision décimétrique
[Termes IGN] RTKLIBRésumé : (auteur) In this work, we investigate the effectiveness of a method leveraging multi-GNSS positioning with low-cost receiver to control the accuracy of a set of predefined points with short time acquisition and reduced sky view factor. Final accuracy is required to be sub-meter level. 20 positions located in Tokyo (Japan) have been observed for 6 minutes with a u-blox NEO M8T receiver and a L1-band antenna. Solutions have been computed with the free software RTKlib, for different combinations of satellite constellations. Eventually, we derived a probabilistic upper bound on the controlled points root mean square error (rmse) based on Rayleigh distribution and the central limit theorem. Results highlighted that completing GPS with one additional constellation may markedly reduce the predicted rmse as well as the convergence time. The gain in accuracy has been found to be more moderated when a maximal number of constellations is added, despite solution is reached much faster. We shall notice however that these findings may be dependent upon the selected mask angle for the computation. Some further analysis is also required to assess more precisely the respective contributions of GLONASS and Beidou systems in the overall enhancement. Numéro de notice : C2017-056 Affiliation des auteurs : LASTIG+Ext (2016-2019) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97092 Documents numériques
peut être téléchargé
Positional accuracy control ... - pdf auteurAdobe Acrobat PDF A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo / Changsheng Cai in Survey review, vol 48 n° 349 (July 2016)PermalinkPermalinkThe influence of application a simplified transformation model between reference frames ECEF and ECI onto prediction accuracy of position and velocity of GLONASS satellites / Robert Krzyzek in Reports on geodesy and geoinformatics, vol 99 (December 2015)PermalinkVisibility and geometry of global satellite navigation systems constellations / Jacek Januszewski in Artificial satellites, vol 50 n° 4 (December 2015)PermalinkCalculation of position and velocity of GLONASS satellite based on analytical theory of motion / W. Goral in Artificial satellites, vol 50 n° 3 (September 2015)PermalinkQuad-Constellation Receiver: GPS, GLONASS, Galileo, BeiDou / Philip G. Mattos in GPS world, vol 25 n° 1 (January 2014)PermalinkNew structure for GLONASS nav message / Alexander Povalyaev in GPS world, vol 24 n° 11 (November 2013)PermalinkMéthodes de travail dans les réseaux GNSS, 3ème partie Méthodes du "statique multi-stations" / Romain Legros in XYZ, n° 134 (mars - mai 2013)PermalinkGLONASS modernization / Y. Urlichich in GPS world, vol 22 n° 11 (November 2011)PermalinkGLONASS: developping strategies for the future / Y. Urlichich in GPS world, vol 22 n° 4 (April 2011)Permalink