Descripteur
Termes IGN > aménagement > infrastructure > réseau technique > réseau de transport
réseau de transportSynonyme(s)réseau de communicationVoir aussi |
Documents disponibles dans cette catégorie (782)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data / Haoyi Xiong in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data Type de document : Article/Communication Auteurs : Haoyi Xiong, Auteur ; Xun Zhou, Auteur ; David A. Bennett, Auteur Année de publication : 2023 Article en page(s) : pp 1157-1179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] détection d'anomalie
[Termes IGN] données spatiotemporelles
[Termes IGN] événement
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (auteur) Traffic congestion on a road segment typically begins as a small-scale spatiotemporal event that can then propagate throughout a road network and produce large-scale disruptions to a transportation system. In current techniques for the analysis of network flow, data is often aggregated to relatively large (e.g. 5 min) discrete time steps that obscure the small-scale spatiotemporal interactions that drive larger-scale dynamics. We propose a new method that handles fine-grained data to better capture those dynamics. Propagation patterns of traffic congestion are represented as spatiotemporally connected events. Each event is captured as a time series at the temporal resolution of the available trajectory data and at the spatial resolution of the network edge. The spatiotemporal propagation patterns of traffic congestion are captured using Dynamic Time Warping and represented as a set of directed acyclic graphs of spatiotemporal events. Results from this method are compared to an existing method using fine-grained data derived from an agent-based model of traffic simulation. Our method outperforms the existing method. Our method also successfully detects congestion propagation patterns that were reported by media news using sparse real-world data derived from taxis. Numéro de notice : A2023-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2023.2178653 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103177
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1157-1179[article]Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs / Alvin Christopher G. Varquez in Sustainable Cities and Society, vol 91 (April 2023)
[article]
Titre : Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs Type de document : Article/Communication Auteurs : Alvin Christopher G. Varquez, Auteur ; Sifan Dong, Auteur ; Shinya Hanaoka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] gare
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] réseau ferroviaire
[Termes IGN] système d'information géographique
[Termes IGN] urbanisationRésumé : (auteur) Plausible urban growth projections aid in the understanding and treatment of multidisciplinary issues faced in society. In this work, we investigated the possible effects of train stations on urban growth by comparing urban projections from a cellular-automata-based land use change model, named SLEUTH, with versions (i.e. SLEUTsH and SLEUTsHGA introduced in this study) that can consider railway-induced urban growth and those (i.e. SLEUTH and SLEUTHGA) that do not. It was found that the influence of the railway stations on urban growth varied with time and according to each city. In general, railway stations induced urbanization in their immediate surroundings. However, edge growth, which is growth at the urban boundaries was slow in the first five years of the future prediction. As demonstrated by the higher urban growth rates simulated for the first few years in the SLEUTsH cases than the SLEUTH cases, the presence of railway stations will lead to more rapid urbanization in the 2040s. Mainly relying on publicly available GIS datasets, this work demonstrates the potential for modeling railway-induced urban growth on a global scale. The findings can be further confirmed with other cellular-automata models using a similar methodology. Numéro de notice : A2023-151 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.scs.2023.104442 Date de publication en ligne : 08/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102824
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104442[article]A network-constrained clustering method for bivariate origin-destination movement data / Wenkai Liu in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
[article]
Titre : A network-constrained clustering method for bivariate origin-destination movement data Type de document : Article/Communication Auteurs : Wenkai Liu, Auteur ; Qiliang Liu, Auteur ; Jie Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 767 - 787 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] origine - destination
[Termes IGN] réseau routierRésumé : (auteur) For bivariate origin-destination (OD) movement data composed of two types of individual OD movements, a bivariate cluster can be defined as a group of two types of OD movements, at least one of which has a high density. The identification of such bivariate clusters can provide new insights into the spatial interactions between different movement patterns. Because of spatial heterogeneity, the effective detection of inhomogeneous and irregularly shaped bivariate clusters from bivariate OD movement data remains a challenge. To fill this gap, we propose a network-constrained method for clustering two types of individual OD movements on road networks. To adaptively estimate the densities of inhomogeneous OD movements, we first define a new network-constrained density based on the concept of the shared nearest neighbor. A fast Monte Carlo simulation method is then developed to statistically estimate the density threshold for each type of OD movements. Finally, bivariate clusters are constructed using the density-connectivity mechanism. Experiments on simulated datasets demonstrate that the proposed method outperformed three state-of-the-art methods in identifying inhomogeneous and irregularly shaped bivariate clusters. The proposed method was applied to taxi and ride-hailing service datasets in Xiamen. The identified bivariate clusters successfully reveal competition patterns between taxi and ride-hailing services. Numéro de notice : A2023-206 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2137879 Date de publication en ligne : 25/10/2022 En ligne : https://doi.org/10.1080/13658816.2022.2137879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103108
in International journal of geographical information science IJGIS > vol 37 n° 4 (April 2023) . - pp 767 - 787[article]Analysis of cycling network evolution in OpenStreetMap through a data quality prism / Raphaël Bres (2023)
Titre : Analysis of cycling network evolution in OpenStreetMap through a data quality prism Type de document : Article/Communication Auteurs : Raphaël Bres, Auteur ; Veronika Peralta, Auteur ; Arnaud Le Guilcher , Auteur ; Thomas Devogele , Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Cyril de Runz, Auteur Editeur : Göttingen : Copernicus publications Année de publication : 2023 Collection : AGILE GIScience Series num. 4 Conférence : AGILE 2023, 26th international AGILE Conference on Geographic Information Science, Spatial data for design 13/06/2023 16/06/2023 Delft Pays-Bas OA Proceedings Importance : n° 3 ; 9 p. Note générale : bibliographie
voir aussi le rapport de reproductibilité : https://doi.org/10.17605/OSF.IO/9KP7ULangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bicyclette
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité territoriale
[Termes IGN] mobilité urbaine
[Termes IGN] modèle de simulation
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des données
[Termes IGN] voie cyclableRésumé : (auteur) Cycling practice has been constantly increasing for several years and the COVID crisis has just accelerated the process. Indeed, more and more municipalities have developed new cycle paths to facilitate cycling. Considering this increasing interest for cycling, it makes sense to study how this recent evolution is reflected in the underlying representation of the cycling network in the geographic databases. Main studies analysing the evolution of the road network focus on the motor vehicle network in the major cities of the world. These studies do not seem applicable to cycling network specially to some low population density areas or even to smaller cities. This paper analyses the changes in the cycling network through OSM data from a data freshness perspective. These changes can be either updates from changes in the real-world network or upgrades to the network. To these end, we propose a method using a Monte Carlo simulation (MCS) to analyse the frequency of changes in cycling routes in several areas with different population density, all in the Loire Valley region in France. We also define the cycling network, which is a very complex concept and we explain how it is represented in OSM data and suffers from different data quality issues. Results show that the number of changes across time are similar in areas having a similar population density, while being lower in low population density areas. These phenomena is higher in the cycling network compared to other networks. Numéro de notice : C2023-011 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : Vers HAL Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-4-3-2023 Date de publication en ligne : 06/06/2023 En ligne : https://doi.org/10.5194/agile-giss-4-3-2023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103308 Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets / Li Geng in ISPRS International journal of geo-information, vol 12 n° 1 (January 2023)
[article]
Titre : Correlation of road network structure and urban mobility intensity: An exploratory study using geo-tagged tweets Type de document : Article/Communication Auteurs : Li Geng, Auteur ; Ke Zhang, Auteur Année de publication : 2023 Article en page(s) : n° 7 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] mobilité urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] TwitterRésumé : (auteur) Urban planners have been long interested in understanding how urban structure and activities are mutually influenced. Human mobility and economic activities naturally drive the formation of road network structure and the accessibility of the latter shapes the patterns of movement flow across urban space. In this paper, we perform an exploratory study on the relationship between the street network structure and the intensity of human movement in urban areas. We focus on two cities and we utilize a dataset of geo-tagged tweets that can form a proxy to urban mobility and the corresponding street networks as obtained from OpenStreetMap. We apply three network centrality measures, including closeness, betweenness and straightness centrality, calculated at a global or local scale, as well as under mixed or individual transportation mode (e.g., driving, biking and walking) with its directional accessibility, to uncover the structural properties of urban street networks. We further design an urban area transition network and apply PageRank to capture the intensity of human mobility. Our correlation analysis indicates different centrality metrics have different levels of correlation with the intensity of human movement. The closeness centrality consistently shows the highest correlation (with a coefficient around 0.6) with human movement intensity when calculated at a global scale, while straightness centrality often shows no correlation at the global scale or weaker correlation ρ≈0.4 at the local scale. The correlation levels further depend on the type of directional accessibility and of various types of transportation modes. Hence, the directionality and transportation mode, largely ignored in the analysis of road networks, are crucial. Furthermore, the strength of the correlation varies in the two cities examined, indicating potential differences in urban spatial structure and human mobility patterns. Numéro de notice : A2023-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.3390/ijgi12010007 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.3390/ijgi12010007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102433
in ISPRS International journal of geo-information > vol 12 n° 1 (January 2023) . - n° 7[article]Improvement of 3D LiDAR point cloud classification of urban road environment based on random forest classifier / Mahmoud Mohamed in Geocarto international, vol 38 n° inconnu ([01/01/2023])PermalinkSemi-automated Pipeline to Produce Customizable Tactile Maps of Street Intersections for People with Visual Impairments / Yuhao Jiang (2023)PermalinkSemantic segmentation of bridge components and road infrastructure from mobile LiDAR data / Yi-Chun Lin in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)PermalinkAn unsupervised framework for extracting multilane roads from OpenStreetMap / Kunkun Wu in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)PermalinkAutomatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)PermalinkEvaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)PermalinkA joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds / Lina Fang in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)PermalinkApplication of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)PermalinkIncremental road network update method with trajectory data and UAV remote sensing imagery / Jianxin Qin in ISPRS International journal of geo-information, vol 11 n° 10 (October 2022)PermalinkSpatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)Permalink3D LiDAR aided GNSS/INS integration fault detection, localization and integrity assessment in urban canyons / Zhipeng Wang in Remote sensing, vol 14 n° 18 (September-2 2022)PermalinkA map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)PermalinkA model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway / Reza Sanayeia in Geocarto international, vol 37 n° 14 ([20/07/2022])Permalink3D-GIS parametric modelling for virtual urban simulation using CityEngine / Ibrahim M. Badwi in Annals of GIS, vol 28 n° 3 (July 2022)PermalinkGANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)PermalinkA participatory trail web map based on open source technologies / Joshua Gore in International journal of cartography, vol 8 n° 2 (July 2022)PermalinkConstraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)PermalinkDetecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)PermalinkTowards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)PermalinkAnalysis of massive imports of open data in Openstreetmap database: a study case for France / Arnaud Le Guilcher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)Permalink