Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > océanographie > eau de mer > couleur de l'océan
couleur de l'océanVoir aussi |
Documents disponibles dans cette catégorie (31)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)
[article]
Titre : Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuxin Wang, Auteur ; Xianqiang He, Auteur ; Yan Bai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 158374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] couleur de l'océan
[Termes IGN] détection automatique
[Termes IGN] eau usée
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] perturbation écologique
[Termes IGN] qualité des eauxRésumé : (auteur) Terrestrial pollution has a great impact on the coastal ecological environment, and widely distributed coastal outfalls act as the final gate through which pollutants flow into rivers and oceans. Thus, effectively monitoring the water quality of coastal outfalls is the key to protecting the ecological environment. Satellite remote sensing provides an attractive way to monitor sewage discharge. Selecting the coastal areas of Zhejiang Province, China, as an example, this study proposes an innovative method for automatically detecting suspected sewage discharge from coastal outfalls based on high spatial resolution satellite imageries from Sentinel-2. According to the accumulated in situ observations, we established a training dataset of water spectra covering various optical water types from satellite-retrieved remote sensing reflectance (Rrs). Based on the clustering results from unsupervised classification and different spectral indices, a random forest (RF) classification model was established for the optical water type classification and detection of suspected sewage. The final classification covers 14 optical water types, with type 12 and type 14 corresponding to the high eutrophication water type and suspected sewage water type, respectively. The classification result of model training datasets exhibited high accuracy with only one misclassified sample. This model was evaluated by historical sewage discharge events that were verified by on-site observations and demonstrated that it could successfully recognize sewage discharge from coastal outfalls. In addition, this model has been operationally applied to automatically detect suspected sewage discharge in the coastal area of Zhejiang Province, China, and shows broad application value for coastal pollution supervision, management, and source analysis. Numéro de notice : A2022-859 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.158374 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.158374 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102135
in Science of the total environment > vol 853 (December 2022) . - n° 158374[article]Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements / Xue Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements Type de document : Article/Communication Auteurs : Xue Li, Auteur ; Shaoling Shang, Auteur ; Zhongping Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4200513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] biomasse
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] couleur de l'océan
[Termes IGN] espèce exotique envahissante
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] plancton
[Termes IGN] réflectanceRésumé : (auteur) Phaeocystis globosa (P. globosa) is a unique causative species of harmful algal blooms, which can form gelatinous colonies. We, for the first time, used unmanned aerial vehicle (UAV) measurements to identify P. globosa blooms and to quantify the biomass. Based on in situ measured remote sensing reflectance ( Rrs ), it is found that, for P. globosa blooms, the maximum of the second-derivative ( dλ2Rrs ) of Rrs(λ) in the 460–480-nm domain is beyond 466 nm. An analysis of the absorption properties from algal cultures suggested that this feature comes from the absorption of chlorophyll c3 (Chl −/c3 ) around 466 nm, a prominent feature of P. globosa. This position of dλ2Rrs maximum was, thus, selected as the criterion for P. globosa identification. The spatial extent of P. globosa blooms in two bays off southern China was then mapped by applying the criterion to UAV-measured Rrs . Twelve out of 16 UAV and in situ match-up stations were consistently identified as dominated by P. globosa, indicating the accuracy of 75%. Furthermore, using localized empirical models, chlorophyll a (Chl −/a ) concentration and colony numbers of P. globosa were estimated from UAV-derived Rrs , where P. globosa colonies were found in a range of ~3–37 gel matrix/L, indicating the occurrence of weak to moderate P. globosa blooms during the surveys. The promising results suggest a high potential for detection and quantification of P. globosa blooms in near-shore bays or harbors using UAV-based hyperspectral remote sensing, where conventional ocean color satellite remote sensing runs into difficulties. Numéro de notice : A2022-025 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051466 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99254
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4200513[article]Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean Type de document : Article/Communication Auteurs : Kunpeng Sun, Auteur ; Tinglu Zhang, Auteur ; Shuguo Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4579 - 4589 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] atténuation
[Termes IGN] couleur de l'océan
[Termes IGN] image Aqua-MODIS
[Termes IGN] image NPP-VIIRS
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] rayonnement ultraviolet
[Termes IGN] régression multipleRésumé : (auteur) Underwater ultraviolet radiation (UVR), which plays a significant role in photobiological and photochemical processes, is one of the key factors in marine ecosystems. A new algorithm KpcaUV, based on kernel principal component analysis (KPCA) and multiple linear regression (MLR), was proposed in this study for the retrieval of the UVR diffuse attenuation coefficient Kd(λ) from remote sensing reflectance Rrs(λ) in the global ocean. KPCA can be applied in all areas that principal components analysis (PCA) can be used. More importantly, KPCA can help mapping data into high dimensions and reducing the nonlinearity between inputs and outputs, which will improve the performance and robustness of algorithms when deriving large dynamic ranges parameters. Compared with SeaUVc, which is one of the most successful Kd(λ) retrieval algorithms in UVR, the results showed that KpcaUV (with R2 : 0.970 and RMSE: 14.0%) performed similar to SeaUVc (with R2 : 0.963 and RMSE: 15.6%) when implemented with high-quality data. Nevertheless, KpcaUV was more robust and consistent than SeaUVc when implemented on the satellite images with different levels of quality control. The RMSD of SeaUVc had a significant reduction from 26.8% (QA ≥ 0.6) to 12.7% (QA = 1.0), and the RMSD of KpcaUV varied less than SeaUVc from 14.6% (QA ≥ 0.6) to 10.1% (QA = 1). Hence, considering its good nonlinear-problem-solving ability and robustness when applied to multiple satellites, KpcaUV proposed by this study can be used to obtain Kd(380) for the continuous observation of the large area. Numéro de notice : A2021-421 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3020294 Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3020294 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97773
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4579 - 4589[article]Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Adriatique, mer
[Termes IGN] bathymétrie
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] couleur de l'océan
[Termes IGN] eaux côtières
[Termes IGN] image Sentinel-MSI
[Termes IGN] incertitude spectrale
[Termes IGN] matière organique
[Termes IGN] Méditerranée, mer
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 Date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]Assessment of chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data / Ioannis Moutzouris-Sidiris in Open geosciences, vol 13 n° 1 (January 2021)
[article]
Titre : Assessment of chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data Type de document : Article/Communication Auteurs : Ioannis Moutzouris-Sidiris, Auteur ; Konstantinos Topouzelis, Auteur Année de publication : 2021 Article en page(s) : pp 85 - 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal
[Termes IGN] couleur de l'océan
[Termes IGN] image Envisat-MERIS
[Termes IGN] image Sentinel-3
[Termes IGN] image Sentinel-OLCI
[Termes IGN] Méditerranée, merRésumé : (auteur) The objective of this study is to evaluate the efficiency of two well-known algorithms (Ocean Colour 4 for MERIS [OC4Me] and neural net [NN]) used in the calculation of chlorophyll-a (Chl-a) from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) compared to in situ measurements covering the Mediterranean Sea. In situ data set, obtained from the Copernicus Marine Environmental Monitoring Service (CMEMS) and more specifically from the data set with the title INSITU_MED_NRT_OBSERVATIONS_013_035, and Chl-a values at different depths were extracted. The concentration of Chl-a at a penetration depth was calculated. Then, water was classified into two categories, Case-1 and Case-2. For Case-2 waters, the OC4Me presents a moderate correlation with the in situ data for a time window of 0–2 h. In contrast with the NN algorithm, where very weak correlations were calculated, lower values of the statistical index of Bias for Case-1 waters were calculated for the OC4Me algorithm. Higher values of Pearson correlation were calculated (r > 0.5) for OC4Me algorithm than NN. OC4Me performed better than NN. Numéro de notice : A2021-487 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1515/geo-2020-0204 Date de publication en ligne : 29/01/2021 En ligne : https://doi.org/10.1515/geo-2020-0204 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97776
in Open geosciences > vol 13 n° 1 (January 2021) . - pp 85 - 97[article]Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkTélédétection multispectrale et hyperspectrale des eaux littorales turbides / Morgane Larnicol (2018)PermalinkImproved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment / Maryam R. Al Shehhi in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)PermalinkAtmospheric correction over coastal waters using multilayer neural networks / Yongzhen Fan in Remote sensing of environment, vol 199 (15 September 2017)PermalinkTélédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)PermalinkApport des mesures directionnelles et polarisées aux corrections atmosphériques au-dessus des océans ouverts. Application à la mission PARASOL / Tristan Harmel (2009)PermalinkExtending the MODIS 1 km ocean colour atmospheric correction to the MODIS 500 m bands and 500 m chlorophyll-a estimation towards coastal and estuarine monitoring / J.D. Shutler in Remote sensing of environment, vol 107 n° 4 (30/04/2007)PermalinkComputing coastal ocean surface curreants from infrared and ocean color satellite imagery / R.I. Crocker in IEEE Transactions on geoscience and remote sensing, vol 45 n° 2 (February 2007)PermalinkSeaWIFS discrimination of harmful algal bloom evolution / P.I. Miller in International Journal of Remote Sensing IJRS, vol 27 n° 11 (June 2006)PermalinkVicarious radiometric calibration of satellite ocean colour sensors / D. Antoine (01/09/2004)Permalink