Descripteur
Documents disponibles dans cette catégorie (93)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)
[article]
Titre : Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuxin Wang, Auteur ; Xianqiang He, Auteur ; Yan Bai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 158374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] couleur de l'océan
[Termes IGN] détection automatique
[Termes IGN] eau usée
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] perturbation écologique
[Termes IGN] qualité des eauxRésumé : (auteur) Terrestrial pollution has a great impact on the coastal ecological environment, and widely distributed coastal outfalls act as the final gate through which pollutants flow into rivers and oceans. Thus, effectively monitoring the water quality of coastal outfalls is the key to protecting the ecological environment. Satellite remote sensing provides an attractive way to monitor sewage discharge. Selecting the coastal areas of Zhejiang Province, China, as an example, this study proposes an innovative method for automatically detecting suspected sewage discharge from coastal outfalls based on high spatial resolution satellite imageries from Sentinel-2. According to the accumulated in situ observations, we established a training dataset of water spectra covering various optical water types from satellite-retrieved remote sensing reflectance (Rrs). Based on the clustering results from unsupervised classification and different spectral indices, a random forest (RF) classification model was established for the optical water type classification and detection of suspected sewage. The final classification covers 14 optical water types, with type 12 and type 14 corresponding to the high eutrophication water type and suspected sewage water type, respectively. The classification result of model training datasets exhibited high accuracy with only one misclassified sample. This model was evaluated by historical sewage discharge events that were verified by on-site observations and demonstrated that it could successfully recognize sewage discharge from coastal outfalls. In addition, this model has been operationally applied to automatically detect suspected sewage discharge in the coastal area of Zhejiang Province, China, and shows broad application value for coastal pollution supervision, management, and source analysis. Numéro de notice : A2022-859 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.158374 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.158374 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102135
in Science of the total environment > vol 853 (December 2022) . - n° 158374[article]Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements / Xue Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : Detection and biomass estimation of phaeocystis globosa blooms off Southern China from UAV-based hyperspectral measurements Type de document : Article/Communication Auteurs : Xue Li, Auteur ; Shaoling Shang, Auteur ; Zhongping Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4200513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algue
[Termes IGN] biomasse
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] couleur de l'océan
[Termes IGN] espèce exotique envahissante
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] plancton
[Termes IGN] réflectanceRésumé : (auteur) Phaeocystis globosa (P. globosa) is a unique causative species of harmful algal blooms, which can form gelatinous colonies. We, for the first time, used unmanned aerial vehicle (UAV) measurements to identify P. globosa blooms and to quantify the biomass. Based on in situ measured remote sensing reflectance ( Rrs ), it is found that, for P. globosa blooms, the maximum of the second-derivative ( dλ2Rrs ) of Rrs(λ) in the 460–480-nm domain is beyond 466 nm. An analysis of the absorption properties from algal cultures suggested that this feature comes from the absorption of chlorophyll c3 (Chl −/c3 ) around 466 nm, a prominent feature of P. globosa. This position of dλ2Rrs maximum was, thus, selected as the criterion for P. globosa identification. The spatial extent of P. globosa blooms in two bays off southern China was then mapped by applying the criterion to UAV-measured Rrs . Twelve out of 16 UAV and in situ match-up stations were consistently identified as dominated by P. globosa, indicating the accuracy of 75%. Furthermore, using localized empirical models, chlorophyll a (Chl −/a ) concentration and colony numbers of P. globosa were estimated from UAV-derived Rrs , where P. globosa colonies were found in a range of ~3–37 gel matrix/L, indicating the occurrence of weak to moderate P. globosa blooms during the surveys. The promising results suggest a high potential for detection and quantification of P. globosa blooms in near-shore bays or harbors using UAV-based hyperspectral remote sensing, where conventional ocean color satellite remote sensing runs into difficulties. Numéro de notice : A2022-025 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3051466 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3051466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99254
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4200513[article]La modélisation des eaux / Michel Kasser in Géomètre, n° 2197 (décembre 2021)
[article]
Titre : La modélisation des eaux Type de document : Article/Communication Auteurs : Michel Kasser , Auteur Année de publication : 2021 Article en page(s) : pp 41 - 41 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] altimétrie par radar
[Termes IGN] image SWOT
[Termes IGN] océanographie dynamique
[Termes IGN] océanographie spatiale
[Termes IGN] précision centimétrique
[Termes IGN] précision de localisation
[Termes IGN] salinité
[Termes IGN] surface de la mer
[Termes IGN] vague
[Termes IGN] variation temporelleRésumé : (Auteur) Grâce à l’altimétrie radar, il est possible de mesurer la hauteur de la surface des mers, avec des applications fortes pour la connaissance de la Terre. Numéro de notice : A2021-893 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99250
in Géomètre > n° 2197 (décembre 2021) . - pp 41 - 41[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 063-2021111 RAB Revue Centre de documentation En réserve L003 Disponible Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data / Yiwen Zhou in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data Type de document : Article/Communication Auteurs : Yiwen Zhou, Auteur ; Roger H. Lang, Auteur ; Emmanuel P. Dinnat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8103 - 8116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] constante diélectrique
[Termes IGN] eau de mer
[Termes IGN] image SAC-D-Aquarius
[Termes IGN] salinité
[Termes IGN] température de surface de la merRésumé : (auteur) A model function of seawater, which specifies the dielectric constant of seawater as a function of salinity, temperature, and frequency, is important for the retrieval of sea surface salinity using satellite data. In 2017, a model function has been developed based on measurement data at 1.4134 GHz using a third-order polynomial expression in salinity ( S ) and temperature ( T ). Although the model showed improvements in salinity retrieval, it had an inconsistent behavior between partitioned salinities. To improve the stability of the model, new dielectric measurements of seawater have been made recently over a broad range of salinities and temperatures to expand the data set used for developing the model function. The structure of the model function has been changed from a polynomial expansion in S and T to a physics-based model consisting of a Debye molecular resonance term plus a conductivity term. Each unknown parameter is expressed in S and T based on the expanded measurement data set. Physical arguments have been used to limit the number of unknown coefficients in these expressions to improve the stability of the model function. The new model function has been employed in the retrieval algorithm of the Aquarius satellite mission to obtain a global salinity map. The retrieved salinity using a different model function is compared with in situ data collected by Argo floats to evaluate the impact and the performance of model functions. The results indicate that the new model function has significant improvements in salinity retrieval compared with other existing models. Numéro de notice : A2021-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3045771 Date de publication en ligne : 14/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3045771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98606
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8103 - 8116[article]Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing / Elliott White Jr in Remote sensing of environment, vol 258 (June 2021)
[article]
Titre : Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing Type de document : Article/Communication Auteurs : Elliott White Jr, Auteur ; David Kaplan, Auteur Année de publication : 2021 Article en page(s) : n° 112385 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] eau de mer
[Termes IGN] Enhanced vegetation index
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] littoral
[Termes IGN] Louisiane (Etats-Unis)
[Termes IGN] marais
[Termes IGN] Mexique (golfe du)
[Termes IGN] montée du niveau de la mer
[Termes IGN] salinité
[Termes IGN] série temporelleRésumé : (auteur) Coastal floodplain swamps (CFS) are an important part of the coastal wetland mosaic, however they are threatened due to accelerated rates of sea level rise and saltwater intrusion (SWI). While remote sensing-based detection of wholesale coastal ecosystem shifts (i.e., from forest to marsh) are relatively straightforward, assessments of chronic, low-level SWI into CFS using remote sensing have yet to be developed and can provide a critical early-warning signal of ecosystem deterioration. In this study, we developed nine ecologically-based hypotheses to test whether remote sensing data could be used to reliably detect the presence of CFS experiencing SWI. Hypotheses were motivated by field- and literature-based understanding of the phenological and vegetative dynamics of CFS experiencing SWI relative to unimpacted, control systems. Hypotheses were organized into two primary groups: those that analyzed differences in summary measures (e.g., median and distribution) between SWI-impacted and unimpacted control sites and those that examined timeseries trends (e.g., sign and magnitude of slope). The enhanced vegetation index (EVI) was used as a proxy for production/biomass and was generated using MODIS surface reflectance data spanning 2000 to 2018. Experimental sites (n = 8) were selected from an existing network of long-term monitoring sites and included 4 pairs of impacted/non-impacted CFS across the northern Gulf of Mexico from Texas to Florida. The four best-supported hypotheses (81% across all sties) all used summary statistics, indicating that there were significant differences in the EVI of CFS experiencing chronic, low-level SWI compared to controls. These hypotheses were tested using data across a large and diverse region, supporting their implementation by researchers and managers seeking to identify CFS undergoing the first phases of SWI. In contrast, hypotheses that assessed CFS change over time were poorly supported, likely due to the slow and variable pace of ecological change, relatively short remote sensing data record, and/or specific site histories. Overall, these results show that remote sensing data can be used to identify differences in CFS vegetation associated with long-term, low-level SWI, but further methodological advancements are needed to reliably detect the temporal transition process. Numéro de notice : A2021-444 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112385 Date de publication en ligne : 12/03/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112385 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97851
in Remote sensing of environment > vol 258 (June 2021) . - n° 112385[article]Retrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)PermalinkCoastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)PermalinkAssessment of chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data / Ioannis Moutzouris-Sidiris in Open geosciences, vol 13 n° 1 (January 2021)PermalinkComparing the performance of turbulent kinetic energy and K-profile parameterization vertical parameterization schemes over the tropical indian ocean / Lokesh Kumar Pandey in Marine geodesy, vol 44 n° 1 (January 2021)PermalinkSemantic segmentation of sea ice type on Sentinel-1 SAR data using convolutional neural networks / Alissa Kouraeva (2021)PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)PermalinkThe construction of sound speed field based on back propagation neural network in the global ocean / Junting Wang in Marine geodesy, vol 43 n° 6 (November 2020)PermalinkUsing Ranked Probability Skill Score (RPSS) as Nonlocal Root-Mean-Square Errors (RMSEs) for Mitigating Wet Bias of Soil Moisture Ocean Salinity (SMOS) Soil Moisture / Ju Hyoung Lee in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)PermalinkOn the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state / Alexey Androsov in Journal of geodesy, vol 93 n° 2 (February 2019)PermalinkConstruction of bulk temperature/salinity from surface temperature and atlas profiles for monitoring water volume variations in the Caspian Sea / Ayoub Moradi (2019)Permalink