Descripteur
Documents disponibles dans cette catégorie (436)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A CNN based approach for the point-light photometric stereo problem / Fotios Logothetis in International journal of computer vision, vol 131 n° 1 (January 2023)
[article]
Titre : A CNN based approach for the point-light photometric stereo problem Type de document : Article/Communication Auteurs : Fotios Logothetis, Auteur ; Roberto Mecca, Auteur ; Ignas Budvytis, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 101 - 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] éclairement lumineux
[Termes IGN] effet de profondeur cinétique
[Termes IGN] intensité lumineuse
[Termes IGN] itération
[Termes IGN] reconstruction 3D
[Termes IGN] réflectivité
[Termes IGN] stéréoscopie
[Termes IGN] vue perspectiveRésumé : (auteur) Reconstructing the 3D shape of an object using several images under different light sources is a very challenging task, especially when realistic assumptions such as light propagation and attenuation, perspective viewing geometry and specular light reflection are considered. Many of works tackling Photometric Stereo (PS) problems often relax most of the aforementioned assumptions. Especially they ignore specular reflection and global illumination effects. In this work, we propose a CNN-based approach capable of handling these realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo and adapt them to the point light setup. We achieve this by employing an iterative procedure of point-light PS for shape estimation which has two main steps. Firstly we train a per-pixel CNN to predict surface normals from reflectance samples. Secondly, we compute the depth by integrating the normal field in order to iteratively estimate light directions and attenuation which is used to compensate the input images to compute reflectance samples for the next iteration. Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT real world dataset. Furthermore, in order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world ’dataset for near-fieLd point light soUrCe photomEtric Stereo’ of 14 objects of different materials were the effects of point light sources and perspective viewing are a lot more significant. Our approach also outperforms the competition on this dataset as well. Data and test code are available at the project page. Numéro de notice : A2023-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01689-3 Date de publication en ligne : 07/10/2022 En ligne : https://doi.org/10.1007/s11263-022-01689-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102364
in International journal of computer vision > vol 131 n° 1 (January 2023) . - pp 101 - 120[article]A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
[article]
Titre : A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Xin Huang, Auteur ; Yujin Feng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5600812 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] carte de profondeur
[Termes IGN] déformation d'objet
[Termes IGN] effet de profondeur cinétique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconstruction d'image
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( https://irsip.whu.edu.cn/resources/resources_en_v2.php ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark. Numéro de notice : A2023-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234694 En ligne : https://doi.org/10.1109/TGRS.2023.3234694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102488
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5600812[article]Production of orthophoto map using mobile photogrammetry and comparative assessment of cost and accuracy with satellite imagery for corridor mapping: a case study in Manesar, Haryana, India / Manuj Dev in Annals of GIS, vol 29 n° 1 (January 2023)
[article]
Titre : Production of orthophoto map using mobile photogrammetry and comparative assessment of cost and accuracy with satellite imagery for corridor mapping: a case study in Manesar, Haryana, India Type de document : Article/Communication Auteurs : Manuj Dev, Auteur ; Shetru M. Veerabhadrappa, Auteur ; Ashutosh Kainthola, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 163 - 176 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Orthophotographie, orthoimage
[Termes IGN] aérotriangulation
[Termes IGN] analyse comparative
[Termes IGN] image panoramique
[Termes IGN] image satellite
[Termes IGN] modèle stéréoscopique
[Termes IGN] orthoimage
[Termes IGN] orthophotocarte
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] système de numérisation mobileRésumé : (auteur) The study aims to find a low-cost alternate technology to get imagery, using mobile platform, and produce digital orthophoto for corridor mapping, with a higher degree of accuracy and which can reduce the lag time of acquisition of data. The present study uses digital single-lens reflex cameras, mounted on a mobile vehicle, and acquisition of data in the video format rather than still photographs, as traditionally used in mobile mapping systems. The videos are used to create a set of images and orthophotos. A widespread ground control points were recorded in the study area, using the global navigation satellite system receiver, which measured the control points in real-time kinematic mode. Generation of digital orthophoto has been completed using the captured mobile imagery and ground control point. Furthermore, procurement of satellite imagery and aerial triangulation using ground control points have been done. While comparing the planimetric accuracy of orthophoto against satellite imagery using the ground control points, the achieved root mean square error value of produced orthophoto is 0.171 m in X axis and 0.205 m in Y axis. However, for Cartosat -1 satellite imagery, the RMSE value for X is 1.22 m and for Y is 1.98 m. This research proposes the alternate low-cost mobile mapping method to capture the imagery for orthophoto production. The cost of orthophoto production from mobile image was found 77% cheaper than the orthophoto cost from fresh/latest satellite imagery procurement, while the overall production was 70% cost-effective than the orthophoto maps made from archived imagery. Numéro de notice : A2023-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/19475683.2022.2141853 Date de publication en ligne : 12/11/2022 En ligne : https://doi.org/10.1080/19475683.2022.2141853 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102864
in Annals of GIS > vol 29 n° 1 (January 2023) . - pp 163 - 176[article]A comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images / Hessah Albanwan in Photogrammetric record, vol 37 n° 180 (December 2022)
[article]
Titre : A comparative study on deep-learning methods for dense image matching of multi-angle and multi-date remote sensing stereo-images Type de document : Article/Communication Auteurs : Hessah Albanwan, Auteur ; Rongjun Qin, Auteur Année de publication : 2022 Article en page(s) : pp 385 - 409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couple stéréoscopique
[Termes IGN] modèle stéréoscopique
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) Deep-learning (DL) stereomatching methods gained great attention in remote sensing satellite datasets. However, most of these existing studies conclude assessments based only on a few/single stereo-images lacking a systematic evaluation on how robust DL methods are on satellite stereo-images with varying radiometric and geometric configurations. This paper provides an evaluation of four DL stereomatching methods through hundreds of multi-date multi-site satellite stereopairs with varying geometric configurations, against the traditional well-practiced Census-semi-global matching (SGM), to comprehensively understand their accuracy, robustness, generalisation capabilities, and their practical potential. The DL methods include a learning-based cost metric through convolutional neural networks (MC-CNN) followed by SGM, and three end-to-end (E2E) learning models using Geometry and Context Network (GCNet), Pyramid Stereo Matching Network (PSMNet), and LEAStereo. Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalise well for unseen data. The learning-based cost metric and Census-SGM are rather robust and can consistently achieve acceptable results. All DL algorithms are robust to geometric configurations of stereopairs and are less sensitive in comparison to the Census-SGM, while learning-based cost metrics can generalise on satellite images when trained on different datasets (airborne or ground-view). Numéro de notice : A2022-938 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12430 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.1111/phor.12430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102684
in Photogrammetric record > vol 37 n° 180 (December 2022) . - pp 385 - 409[article]A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery / Sajid Ghuffar in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery Type de document : Article/Communication Auteurs : Sajid Ghuffar, Auteur ; Tobias Bolch, Auteur ; Ewelina Rupnik , Auteur ; Atanu Bhattacharya, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie
voir aussi https://research-repository.st-andrews.ac.uk/bitstream/10023/26124/1/Ghuffar_2022_IEEE_TGRS_Pipeline_automated_processing_AAM.pdfLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compensation par faisceaux
[Termes IGN] géométrie de l'image
[Termes IGN] géométrie épipolaire
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Corona
[Termes IGN] image panoramique
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] point d'appuiRésumé : (auteur) The Corona KH-4 reconnaissance satellite missions from 1962-1972 acquired panoramic stereo imagery with high spatial resolution of 1.8-7.5 m. The potential of 800,000+ declassified Corona images has not been leveraged due to the complexities arising from handling of panoramic imaging geometry, film distortions and limited availability of the metadata required for georeferencing of the Corona imagery. This paper presents Corona Stereo Pipeline (CoSP): A pipeline for processing of Corona KH-4 stereo panoramic imagery. CoSP utlizes a deep learning based feature matcher SuperGlue to automatically match features point between Corona KH-4 images and recent satellite imagery to generate Ground Control Points (GCPs). To model the imaging geometry and the scanning motion of the panoramic KH-4 cameras, a rigorous camera model consisting of modified collinearity equations with time dependent exterior orientation parameters is employed. The results show that using the entire frame of the Corona image, bundle adjustment using well-distributed GCPs results in an average standard deviation (SD) of less than 2 pixels. We evaluate fiducial marks on the Corona films and show that pre-processing the Corona images to compensate for film bending improves the accuracy. We further assess a polynomial epipolar resampling method for rectification of Corona stereo images. The distortion pattern of image residuals of GCPs and y-parallax in epipolar resampled images suggest that film distortions due to long term storage as likely cause of systematic deviations. Compared to the SRTM DEM, the Corona DEM computed using CoSP achieved a Normalized Median Absolute Deviation (NMAD) of elevation differences of ? 4m over an area of approx. 4000km2. We show that the proposed pipeline can be applied to sequence of complex scenes involving high relief and glacierized terrain and that the resulting DEMs can be used to compute long term glacier elevation changes over large areas. Numéro de notice : A2022-952 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers ArXiv Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3200151 Date de publication en ligne : 19/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3200151 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103286
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - pp[article]Encoder-decoder structure with multiscale receptive field block for unsupervised depth estimation from monocular video / Songnan Chen in Remote sensing, Vol 14 n° 12 (June-2 2022)PermalinkAn approach to extracting digital elevation model for undulating and hilly terrain using de-noised stereo images of Cartosat-1 sensor / Litesh Bopche in Applied geomatics, vol 14 n° 1 (March 2022)Permalink3D stem modelling in tropical forest: towards improved biomass and biomass change estimates / Sébastien Bauwens (2022)PermalinkPermalinkPermalinkGlobal glacier mass change by spatiotemporal analysis of digital elevation models / Romain Hugonnet (2022)PermalinkThe polar epipolar rectification / François Darmon in IPOL Journal, Image Processing On Line, vol 11 (2021)PermalinkDigital building-height preparation from satellite stereo images / P.S. Prakash in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 8 (August 2021)PermalinkAutomated registration of SfM‐MVS multitemporal datasets using terrestrial and oblique aerial images / Luigi Parente in Photogrammetric record, vol 36 n° 173 (March 2021)PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)Permalink