Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géologie > lithosphère > isostasie
isostasieVoir aussi |
Documents disponibles dans cette catégorie (28)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A generalized theory of the figure of the Earth : on the global dynamical flattening / Chenjun Liu in Journal of geodesy, vol 93 n° 3 (March 2019)
[article]
Titre : A generalized theory of the figure of the Earth : on the global dynamical flattening Type de document : Article/Communication Auteurs : Chenjun Liu, Auteur ; Chengli Huang, Auteur ; Yu Liu, Auteur ; Mian Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 319 - 331 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] aplatissement
[Termes IGN] croute terrestre
[Termes IGN] isostasie
[Termes IGN] manteau terrestre
[Termes IGN] moment d'inertie
[Termes IGN] noyau terrestre
[Termes IGN] rotation de la TerreRésumé : (Auteur) A generalized theory of the figures of the Earth’s interior to a third-order precision of ellipticity is proposed in accompanying paper in which all the odd degree and nonzero order spherical harmonic terms are included. As both the direct and indirect contributions of the asymmetric crust are included, this theory makes a significant improvement for calculating the asymmetric equilibrium figures of the real Earth comparing with the traditional theories which can only deal with the ideal symmetric Earth. The principal moments of inertia (PMOI: A, B, C) and global dynamical flattening (H) are important quantities in studying the rotating Earth. Precession and gravity observations give observation value of H (Hobs≈1/305.4559) with very high precision, while its theoretical calculated value (Htheory≈1/308.5) from traditional theories and a starting symmetric Earth model (like PREM model) is about 1% less than Hobs. Using the new theory in accompanying paper and replacing the homogeneous outermost crust and oceanic layers in PREM with CRUST1.0 model, we recalculate the equilibrium figures of the Earth’s interior and finally get new values of PMOI and Htheory (≈1/304.7167) whose consistency with Hobs are significantly improved to 0.24%. Furthermore, the asymmetric figures of some interesting boundaries, like inner core boundary, core-mantle boundary, are also given as by-products of this work as these boundaries’ figures are key input for studies of their topographic effect on global rotation and geodynamics, like nutation, normal modes, especially like free core nutation. Numéro de notice : A2019-151 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1163-x Date de publication en ligne : 22/06/2018 En ligne : https://doi.org/10.1007/s00190-018-1163-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92490
in Journal of geodesy > vol 93 n° 3 (March 2019) . - pp 319 - 331[article]
Titre : Gravity forward modeling with a tesseroid-based rock-water-ice approach : Theory and applications in the context of the GOCE mission and height system unification Type de document : Thèse/HDR Auteurs : Thomas Grombein, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2017 Collection : DGK - C Sous-collection : Dissertationen num. 798 Importance : 222 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-7696-5210-9 Note générale : bibliographie
Inaugural dissertation for the fulfillment of the requirements for the academic degree of Doctor of Engineering (Dr.-Ing.) accepted by the Department of Civil Engineering, Geo and Environmental Sciences of the Karlsruhe Institute of Technology (KIT)
Diese Dissertation ist auf dem Server der Deutschen Geodätischen Kommission unter <http://dgk.badw.de/> sowie auf dem Server des Karlsruher Instituts für Technologie unter <http://dx.doi.org/10.5445/KSP/1000068500> elektronisch publiziertLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] eau de surface
[Termes IGN] glace
[Termes IGN] gradient de gravitation
[Termes IGN] isostasie
[Termes IGN] levé gravimétrique
[Termes IGN] ondelette
[Termes IGN] problème des valeurs limites
[Termes IGN] tesseroidRésumé : (auteur) Due to the increasing availability of global high-resolution digital terrain models (DTMs), it has nowadays become possible to obtain a detailed image of the Earth’s topography. This enables to precisely determine the gravitational effect of the topographic masses on the Earth’s gravity field. The central technique for this aim is gravity forward modeling (GFM), which is based on Newton’s law of universal gravitation, and allows to convert topographic heights along with suitable density assumptions into corresponding values of the gravitational potential and its derivatives. This topographic gravity forward modeling attracts a growing interest in various areas of geodetic gravity field determination and geophysical studies of the Earth’s composition and structure (e.g., solid-earth sciences). However, previous GFM methods have proven unsuitable for the increasing accuracy requirements stemming from an improved precision of geodetic measurements. This is due to commonly used simplifications and approximations, such as (i) the use of condensed heights for water and ice masses (rock-equivalent heights), (ii) mass discretizations or arrangements based on planar and spherical approximations, and (iii) assumptions regarding the spectral consistency between band-limited topographic heights and induced gravity, as in residual terrain modeling (RTM) techniques. This thesis contributes to state-of-the-art GFM in the space domain by providing effective techniques and refinements that overcome these limitations. More concretely, the theory of the Rock-Water-Ice (RWI) approach is developed that encompasses a more realistic modeling of the Earth’s topographic and isostatic masses, i.e., the masses of the continents, oceans, lakes, ice sheets and shelves, as well as their deeper lying (isostatic) compensation masses in the Earth’s interior. The RWI method is characterized by a three-layer decomposition of the Earth’s topography that accounts for a rigorous separate modeling of the rock, water, and ice masses with variable density values. Furthermore, a modified Airy-Heiskanen isostatic concept is applied that is enhanced by additional geophysical information in terms of a seismologically derived depth model of the Mohorovicic discontinuity, i.e., the boundary surface between the Earth’s crust and mantle. To counteract the increased computational demand of the more complex modeling, an efficient numerical algorithm is needed for the forward modeling. For space domain GFM, it has become more and more customary to use a mass discretization based on tesseroids, which are mass bodies bounded by geocentric spherical coordinate lines, and hence are directly linked to the curvature of the Earth. Several studies have demonstrated their superiority over classical prism methods with respect to precision and computation time. However, for global applications based on high-resolution DTMs, any computational speed-up with respect to a single mass body leads to a massive improvement in the overall computation time. This thesis presents a considerable optimization of previously used tesseroid formulas, where the gravitational field of a tesseroid and its derivatives up to second-order are represented in a compact and computationally attractive form. This allows an efficient numerical evaluation that reduces the overall runtime by about 20 to 55%, depending on the evaluated gravity field functional. Additionally, to correctly locate topographic masses in space, tesseroids are arranged on an ellipsoidal reference surface. Within this thesis, the novel tesseroid-based RWI approach is applied to different topographic input data and is used for various gravity field functionals in two main applications. Both are connected to ESA’s satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) that measured the second-order derivatives of the gravitational potential, commonly known as gravity gradients. In the first application, RWI-based topographic-isostatic effects are calculated along the orbit of the GOCE satellite and are subtracted from the gravity gradient observations. In this way, the measurement signal is smoothed so that interpolation and prediction tasks, such as harmonic downward continuation of the gradients from satellite altitude to the Earth’s surface, can be executed with an improved numerical stability. While in previous studies such a concept was applied to simulated gravity gradients, this thesis presents the application to real GOCE measurements. As the smoothing effect strongly depends on the variability of the topography crossed by the satellite, this procedure is particularly suitable for regional applications. For a time series when the satellite passed the Himalayan region, a comparison of the observed gradients to the reduced ones reveals significant smoothing effects that are quantified by analyses in the space and frequency domain. The second application contributes to the task of height system unification, which aims to connect the different locally defined reference levels, conventionally used for national height systems. This is achieved by a satellite-based method which employs global geopotential models derived from data of the GOCE mission, whose limited spectral resolution is extended by high-frequency topographic effects of the RWI approach. To extract these high-frequency signals, a novel (residual) gravity forward modeling method is proposed that allows to perform the required high pass filtering directly in the gravity domain, thus, avoiding the above-mentioned assumption (iii) of the RTM method. By using three representative study areas in Germany, Austria, and Brazil, the benefit and importance of high-frequency topography-implied gravity signals for an accurate estimation of height datum offsets is demonstrated. As a highlight of this thesis, the RWI approach is utilized to generate a series of topographic-isostatic gravity field models. These RWI models provide a high-resolution representation of the Earth’s topographic-isostatic gravitational potential in terms of spherical harmonics expanded up to degree and order 1800 (Release 2012), and 2190 (Release 2015). The spherical harmonic coefficients of these models are obtained from a spherical harmonic analysis of global gridded potential values, which have been calculated by massive parallel computing on high-performance computer systems. By using spherical harmonic synthesis, the RWI model can be used to efficiently calculate various functionals of the topographic-isostatic potential in different heights. For this purpose, the RWI models are publicly available via the database of the International Centre for Global Earth Models (ICGEM) and have already been used in a wide range of studies by other research groups. Note de contenu : 1. Introductory chapter
2. Optimized formulas for the gravitational field of a tesseroid
3. A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients
4. The Rock-Water-Ice topographic gravity field model RWI TOPO 2015 and its comparison to a conventional rock-equivalent version
5. On high-frequency topography-implied gravity signals for height system unification 6. Height system unification based on the fixed GBVP approachNuméro de notice : 17488 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : dissertation : : Karlsruhe Institute of Technology : 2017 DOI : 10.5445/KSP/1000068500 En ligne : http://doi.org/10.5445/KSP/1000068500 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89828 Empirical model of the gravitational field generated by the oceanic lithosphere / Robert Tenzer in Advances in space research, vol 55 n° 1 ([01/01/2015])
[article]
Titre : Empirical model of the gravitational field generated by the oceanic lithosphere Type de document : Article/Communication Auteurs : Robert Tenzer, Auteur ; W. Chen, Auteur ; Zhourun Ye, Auteur Année de publication : 2015 Article en page(s) : pp 72 - 82 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de gravitation
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] harmonique sphérique
[Termes IGN] isostasie
[Termes IGN] lithosphère
[Termes IGN] modèle empirique
[Termes IGN] océanRésumé : (auteur) We present an empirical model of the gravitational field generated by the oceanic lithosphere computed over the world’s oceans with a spectral resolution complete to a spherical harmonic degree of 180. This gravity model is compiled based on applying methods for a spherical harmonic analysis and synthesis of the global gravity and crustal structure models. The in situ seawater densities and the density samples from ocean-floor drilling sites are utilized in the gravimetric forward modeling of bathymetry and marine sediments. The gravitational signal attributed to the oceanic lithosphere density structure is described empirically in terms of the ocean-floor age and depth. The former is explained by the increasing density with age due to conductive cooling of the oceanic lithosphere. The latter describes the gravitational signature of thermal lithospheric contraction, which is isostatically compensated by ocean deepening. The long-wavelength gravity spectrum reflects mainly the compositional and thermal structures within the sub-lithospheric mantle. We demonstrate that this empirical gravity model reproduces realistically most of the long-to-medium wavelength features of the actual gravity field, except for some systematic discrepancies, especially along continental slopes and large sedimentary accumulations, which cannot be described accurately by applied empirical models. Numéro de notice : A2015-296 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2014.09.023 En ligne : https://doi.org/10.1016/j.asr.2014.09.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76456
in Advances in space research > vol 55 n° 1 [01/01/2015] . - pp 72 - 82[article]Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland / C. Siemes in Journal of geodesy, vol 87 n° 1 (January 2013)
[article]
Titre : Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland Type de document : Article/Communication Auteurs : C. Siemes, Auteur ; Pavel Ditmar, Auteur ; et al., Auteur Année de publication : 2013 Article en page(s) : pp 69 - 87 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] calotte glaciaire
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] filtre de Wiener
[Termes IGN] gravimétrie spatiale
[Termes IGN] Groenland
[Termes IGN] harmonique sphérique
[Termes IGN] isostasie
[Termes IGN] levé gravimétrique
[Termes IGN] matrice de covarianceRésumé : (Auteur) The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the Earth’s gravity field since March 2002. We propose a new filtering procedure for post-processing GRACE-based monthly gravity field solutions provided in the form of spherical harmonic coefficients. The procedure is tuned for the optimal estimation of linear trends and other signal components that show a systematic behavior over long time intervals. The key element of the developed methodology is the statistically optimal Wiener-type filter which makes use of the full covariance matrices of noise and signal. The developed methodology is applied to determine the mass balance of the Greenland ice sheet, both per drainage system and integrated, as well as the mass balance of the ice caps on the islands surrounding Greenland. The estimations are performed for three 2-year time intervals (2003–2004, 2005–2006, and 2007–2008), as well as for the 6-year time interval (2003–2008). The study confirms a significant difference in the behavior of the drainage systems over time. The average 6-year rate of mass loss in Greenland is estimated as 165 + 15 Gt/year. The rate of mass loss of the ice caps on Ellesmere Island (together with Devon Island), Baffin Island, Iceland, and Svalbard is found to be 22 + 4, 21 + 6, 17 + 9, and 6 + 2 Gt/year, respectively. All these estimates are corrected for the effect of glacial isostatic adjustment. Numéro de notice : A2013-071 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-012-0580-5 Date de publication en ligne : 12/07/2012 En ligne : https://doi.org/10.1007/s00190-012-0580-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32209
in Journal of geodesy > vol 87 n° 1 (January 2013) . - pp 69 - 87[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2013011 SL Revue Centre de documentation Revues en salle Disponible Ocean loading effects on the prediction of Antarctic glacial isostatic uplift and gravity rates / K. Simon in Journal of geodesy, vol 84 n° 5 (May 2010)
[article]
Titre : Ocean loading effects on the prediction of Antarctic glacial isostatic uplift and gravity rates Type de document : Article/Communication Auteurs : K. Simon, Auteur ; T. James, Auteur ; Eric Ivins, Auteur Année de publication : 2010 Article en page(s) : pp 305 - 317 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Antarctique
[Termes IGN] champ de pesanteur local
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GRACE
[Termes IGN] isostasie
[Termes IGN] positionnement par GPS
[Termes IGN] surcharge océaniqueRésumé : (Auteur) The effect of regional ocean loading on predicted rates of crustal uplift and gravitational change due to glacial isostatic adjustment (GIA) is determined for Antarctica. The effect is found to be significant for the ICE-3G and ICE-5G loading histories (up to -8 mm/year and -3 mm/year change in uplift rate and -3 cm/year and -1 cm/year equivalent water height change (EWHC) of surface mass, respectively). The effect is smaller (+1 mm/year; +0.25 cm/year) for the IJ05 loading history. The impact of ocean loading on the rate of change of the long-wavelength zonal harmonics of the Earth’s gravitational field is also significantly smaller for IJ05 than ICE-3G. A simple analytical formula is derived that is accurate to about 3% in a root-mean-square sense that relates predicted or observed gravitational change at the surface of the Earth (r = a) to the EWHC. A fundamental difference in the definition of the load histories accounts for the differing sensitivities to ocean loading. IJ05 defines its surface load history relative to the present-day surface load, rather than specifying an absolute loading history, and thus implicitly approximates the temporal and spatial mass exchange between grounded ice and open ocean. In contrast, ICE-3G and ICE-5G specify an absolute load history and explicit regional ocean loading substantially perturbs predicted GIA rates. Conclusions of previous studies that used IJ05 predictions without ocean loading are relatively robust. Numéro de notice : A2010-183 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-010-0368-4 Date de publication en ligne : 12/02/2010 En ligne : https://doi.org/10.1007/s00190-010-0368-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30378
in Journal of geodesy > vol 84 n° 5 (May 2010) . - pp 305 - 317[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 266-2010051 SL Revue Centre de documentation Revues en salle Disponible Effects of topographic-isostatic masses on gravitational functionals at the Earth's surface and at airborne and satellite altitudes / A. Makhloof in Journal of geodesy, vol 82 n° 2 (February 2008)PermalinkPhysical geodesy / Bernhard Hofmann-Wellenhof (2005)PermalinkGeoidbestimmung mit geopotentiellen Koten / M. Feistritzer (1998)PermalinkGravitation, gravimétrie, géodésie spatiale et géophysique / Groupe de recherche de géodésie spatiale (ca : 1995)PermalinkThe figure of the Earth / Helmut Moritz (1990)PermalinkPermalinkVariationen zum Geoid in Deutschland / J. Brennecke (1975)PermalinkCours de géologie / P. De Peyronnet (1972)PermalinkPhysique et dynamique planétaires, 2. Volume 2 Gravimétrie, potentiel gravitationnel de la Terre et de la lune / Paul Melchior (1971)PermalinkLotabweichungen aus sichtbaren Massen, berechnet mit Hilfe einer Rechenanlage für das Basisvergröße-rungsnetz Heerbrugg / E. Reinhart (1968)Permalink