Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > triangulation (topologie) > triangulation de Delaunay
triangulation de Delaunay |
Documents disponibles dans cette catégorie (125)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules / Fubing Zhang in ISPRS International journal of geo-information, vol 11 n° 12 (December 2022)
[article]
Titre : Progressive collapse of dual-line rivers based on river segmentation considering cartographic generalization rules Type de document : Article/Communication Auteurs : Fubing Zhang, Auteur ; Qun Sun, Auteur ; Jingzhen Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 609 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] effondrement (généralisation)
[Termes IGN] représentation multiple
[Termes IGN] rivière
[Termes IGN] segmentation
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Collapse is a common cartographic generalization operation in multi-scale representation and cascade updating of vector spatial data. During transformation from large- to small-scale, the dual-line river shows progressive collapse from narrow river segment to line. The demand for vector spatial data with various scales is increasing; however, research on the progressive collapse of dual-line rivers is lacking. Therefore, we proposed a progressive collapse method based on vector spatial data. First, based on the skeleton graph of the dual-line river, the narrow and normal river segments are preliminarily segmented by calculating the width of the river. Second, combined with the rules of cartographic generalization, the collapse and exaggeration priority strategies are formulated to determine the handling mode of the river segment. Finally, based on the two strategies, progressive collapse of dual-line rivers is realized by collapse and exaggeration of the river segment. Experimental results demonstrated that the progressive collapse results of the proposed method were scale-driven, and the collapse part had no burr and topology problems, whereas the remaining part was clearly visible. The proposed method can be better applied to progressive collapse of the dual-line river through qualitative and quantitative evaluation with another progressive collapse method. Numéro de notice : A2022-901 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11120609 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.3390/ijgi11120609 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102285
in ISPRS International journal of geo-information > vol 11 n° 12 (December 2022) . - n° 609[article]Raster-based method for building selection in the multi-scale representation of two-dimensional maps / Yilang Shen in Geocarto international, vol 37 n° 22 ([10/10/2022])
[article]
Titre : Raster-based method for building selection in the multi-scale representation of two-dimensional maps Type de document : Article/Communication Auteurs : Yilang Shen, Auteur ; Tinghua Ai, Auteur ; Rong Zhao, Auteur Année de publication : 2022 Article en page(s) : pp 6494 - 6518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] bâtiment
[Termes IGN] densité du bâti
[Termes IGN] distribution spatiale
[Termes IGN] données matricielles
[Termes IGN] représentation cartographique 2D
[Termes IGN] représentation multiple
[Termes IGN] segmentation
[Termes IGN] superpixel
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) In the multi-scale representation of maps, a selection operation is usually applied to reduce the number of map elements and improve legibility while maintaining the original distribution characteristics. During the past few decades, many methods for vector building selection have been developed; however, pixel-based methods are relatively lacking. In this paper, a multiple-strategy method for raster building selection is proposed. In this method, to preserve the distribution range, a new homogeneous linear spectral clustering (HLSC) superpixel segmentation method is developed for the relatively homogeneous spatial division of building groups. Then, to preserve the relative distribution density, multi-level spatial division is performed according to the local number of buildings. Finally, to preserve the local geometric, attributive and geographical characteristics, four selection strategies, namely, the minimum centroid distance, minimum boundary distance, maximum area and considering geographical element strategies, are designed to generate selection results. To evaluate the proposed method, dispersed buildings in a suburban area are utilized to perform selection tasks. The experimental results indicate that the proposed method can effectively select dispersed irregular buildings at different levels of detail while maintaining the original distribution range and relative distribution density. In addition, the use of multiple selection strategies considering various geometric, attributive and geographical characteristics provides multiple options for cartography. Numéro de notice : A2022-727 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1943007 Date de publication en ligne : 29/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1943007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101673
in Geocarto international > vol 37 n° 22 [10/10/2022] . - pp 6494 - 6518[article]Estimating urban functional distributions with semantics preserved POI embedding / Weiming Huang in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Estimating urban functional distributions with semantics preserved POI embedding Type de document : Article/Communication Auteurs : Weiming Huang, Auteur ; Lizhen Cui, Auteur ; Meng Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1905 - 1930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] Chine
[Termes IGN] classe sémantique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage
[Termes IGN] lissage de données
[Termes IGN] matrice de co-occurrence
[Termes IGN] Perceptron multicouche
[Termes IGN] point d'intérêt
[Termes IGN] triangulation de Delaunay
[Termes IGN] zone urbaineRésumé : (auteur) We present a novel approach for estimating the proportional distributions of function types (i.e. functional distributions) in an urban area through learning semantics preserved embeddings of points-of-interest (POIs). Specifically, we represent POIs as low-dimensional vectors to capture (1) the spatial co-occurrence patterns of POIs and (2) the semantics conveyed by the POI hierarchical categories (i.e. categorical semantics). The proposed approach utilizes spatially explicit random walks in a POI network to learn spatial co-occurrence patterns, and a manifold learning algorithm to capture categorical semantics. The learned POI vector embeddings are then aggregated to generate regional embeddings with long short-term memory (LSTM) and attention mechanisms, to take account of the different levels of importance among the POIs in a region. Finally, a multilayer perceptron (MLP) maps regional embeddings to functional distributions. A case study in Xiamen Island, China implements and evaluates the proposed approach. The results indicate that our approach outperforms several competitive baseline models in all evaluation measures, and yields a relatively high consistency between the estimation and ground truth. In addition, a comprehensive error analysis unveils several intrinsic limitations of POI data for this task, e.g. ambiguous linkage between POIs and functions. Numéro de notice : A2022-738 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2022.2040510 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2040510 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101714
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 1905 - 1930[article]A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
[article]
Titre : A framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Bo Zhou, Auteur ; Shuai Jin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101807 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire minimum
[Termes IGN] distribution spatiale
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphes
[Termes IGN] taxinomie
[Termes IGN] trafic routier
[Termes IGN] triangulation de Delaunay
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) Land-use classification plays an important role in urban planning and resource allocation and had contributed to a wide range of urban studies and investigations. With the development of crowdsourcing technology and map services, points of interest (POIs) have been widely used for recognizing urban land-use types. However, current research methods for land-use classifications have been limited to extracting the spatial relationship of POIs in research units. To close this gap, this study uses a graph-based data structure to describe the POIs in research units, with graph convolutional networks (GCNs) being introduced to extract the spatial context and urban land-use classification. First, urban scenes are built by considering the spatial context of POIs. Second, a graph structure is used to express the scenes, where POIs are treated as graph nodes. The spatial distribution relationship of POIs is considered to be the graph's edges. Third, a GCN model is designed to extract the spatial context of the scene by aggregating the information of adjacent nodes within the graph and urban land-use classification. Thus, the land-use classification can be treated as a classification on a graphic level through deep learning. Moreover, the POI spatial context can be effectively extracted during classification. Experimental results and comparative experiments confirm the effectiveness of the proposed method. Numéro de notice : A2022-460 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101807 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101807 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100622
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101807[article]City3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : City3D: Large-scale building reconstruction from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Jin Huang, Auteur ; Jantien E. Stoter, Auteur ; Ravi Peters, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] mur
[Termes IGN] polygonale
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] Triangular Regular Network
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We present a fully automatic approach for reconstructing compact 3D building models from large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR point clouds lies in that the vertical walls are typically missing. Based on the observation that urban buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an approach to infer the vertical walls directly from the data. With the planar segments of both roofs and walls, we hypothesize the faces of the building surface, and the final model is obtained by using an extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, we introduce a new energy term to encourage roof preferences and two additional hard constraints into the optimization step to ensure correct topology and enhance detail recovery. Experiments on various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we have generated a new dataset with our method consisting of the point clouds and 3D models of 20k real-world buildings. We believe this dataset can stimulate research in urban reconstruction from airborne LiDAR point clouds and the use of 3D city models in urban applications. Numéro de notice : A2022-387 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14092254 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.3390/rs14092254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100667
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2254[article]A cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkPermalinkA typification method for linear building groups based on stroke simplification / Xiao Wang in Geocarto international, vol 36 n° 15 ([15/08/2021])PermalinkScalable surface reconstruction with Delaunay-Graph neural networks / Raphaël Sulzer in Computer graphics forum, vol 40 n° 5 (2021)PermalinkForest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method / Hongliang Lu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)PermalinkA heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])PermalinkPermalinkIntroducing diversion graph for real-time spatial data analysis with location based social networks / Sameera Kannangara (2021)PermalinkLearning-based representations and methods for 3D shape analysis, manipulation and reconstruction / Marie-Julie Rakotosaona (2021)PermalinkPlanimetric simplification and lexicographic optimal chains for 3D urban scene reconstruction / Julien Vuillamy (2021)Permalink