Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > distribution, loi de > distribution de Gauss
distribution de GaussSynonyme(s)loi normale gaussienne ;loi normale distribution normale |
Documents disponibles dans cette catégorie (42)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach / Shenglong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 195 (January 2023)
[article]
Titre : Large-scale individual building extraction from open-source satellite imagery via super-resolution-based instance segmentation approach Type de document : Article/Communication Auteurs : Shenglong Chen, Auteur ; Yoshiki Ogawa, Auteur ; Chenbo Zhao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 129 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] détection du bâti
[Termes IGN] distribution de Gauss
[Termes IGN] image à haute résolution
[Termes IGN] mosaïquage d'images
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Building footprint is a primary dataset of an urban geographic information system (GIS) database. Therefore, it is essential to establish a robust and automated framework for large-scale building extraction. However, the characteristic of remote sensing images complicates the application of the instance segmentation method based on the Mask R-CNN model, which ought to be improved toward extracting and fusing multi-scale features. Moreover, open-source satellite image datasets with wider spatial coverage and temporal resolution than high-resolution images may exhibit different coloration and resolution. This study proposes a large-scale building extraction framework based on super-resolution (SR) and instance segmentation using a relatively lower-resolution (>0.6 m) open-sourced dataset. The framework comprises four steps: color normalization and image super-resolution, scene classification, building extraction, and scene mosaicking. We took Hyogo Prefecture, Japan (19,187 km2) as a test area and extracted 1,726,006 (29.12 km2) of the 3,301,488 buildings (32.46 km2), where the number of buildings and footprint area increased by 3.0 % and 5.0 % respectively. The result indicated that the color normalization and image super-resolution could improve the visual quality of open-source satellite images and contribute to building extraction accuracy. Moreover, the improved Mask R-CNN based on Multi-Path Vision Transformer (MPViT) backbone achieved F1 scores of 0.71, 0.70, 0.81, and 0.67 for non-built-up, rural, suburban, and urban areas, respectively, which is better than those of the baseline model and other mainstream instance segmentation approaches. This study demonstrates the potential of acquiring acceptable building footprint maps from open-source satellite images, which has significant practical implications. Numéro de notice : A2023-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.11.006 Date de publication en ligne : 30/11/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.11.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102214
in ISPRS Journal of photogrammetry and remote sensing > vol 195 (January 2023) . - pp 129 - 152[article]Uncertainty estimation for stereo matching based on evidential deep learning / Chen Wang in Pattern recognition, vol 124 (April 2022)
[article]
Titre : Uncertainty estimation for stereo matching based on evidential deep learning Type de document : Article/Communication Auteurs : Chen Wang, Auteur ; Xiang Wang, Auteur ; Jiawei Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] distribution de Gauss
[Termes IGN] fonction de perte
[Termes IGN] lissage de données
[Termes IGN] modèle d'incertitude
[Termes IGN] reconstruction d'imageRésumé : (auteur) Although deep learning-based stereo matching approaches have achieved excellent performance in recent years, it is still a non-trivial task to estimate the uncertainty of the produced disparity map. In this paper, we propose a novel approach to estimate both aleatoric and epistemic uncertainties for stereo matching in an end-to-end way. We introduce an evidential distribution, named Normal Inverse-Gamma (NIG) distribution, whose parameters can be used to calculate the uncertainty. Instead of directly regressed from aggregated features, the uncertainty parameters are predicted for each potential disparity and then averaged via the guidance of matching probability distribution. Furthermore, considering the sparsity of ground truth in real scene datasets, we design two additional losses. The first one tries to enlarge uncertainty on incorrect predictions, so uncertainty becomes more sensitive to erroneous regions. The second one enforces the smoothness of the uncertainty in the regions with smooth disparity. Most stereo matching models, such as PSM-Net, GA-Net, and AA-Net, can be easily integrated with our approach. Experiments on multiple benchmark datasets show that our method improves stereo matching results. We prove that both aleatoric and epistemic uncertainties are well-calibrated with incorrect predictions. Particularly, our method can capture increased epistemic uncertainty on out-of-distribution data, making it effective to prevent a system from potential fatal consequences. Code is available at https://github.com/Dawnstar8411/StereoMatching-Uncertainty. Numéro de notice : A2022-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.patcog.2021.108498 Date de publication en ligne : 23/12/2021 En ligne : https://doi.org/10.1016/j.patcog.2021.108498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99992
in Pattern recognition > vol 124 (April 2022) . - n° 108498[article]Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework / Peyman Azimpour in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
[article]
Titre : Hyperspectral image denoising via clustering-based latent variable in variational Bayesian framework Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; Tahereh Bahraini, Auteur ; Hadi Sadoghi Yazdi, Auteur Année de publication : 2021 Article en page(s) : pp 3266 - 3276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification bayesienne
[Termes IGN] classification floue
[Termes IGN] distribution de Gauss
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] image hyperspectrale
[Termes IGN] Matlab
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] variableRésumé : (auteur) The hyperspectral-image (HSI) noise-reduction step is a very significant preprocessing phase of data-quality enhancement. It has been attracting immense research attention in the remote sensing and image processing domains. Many methods have been developed for HSI restoration, the goal of which is to remove noise from the whole HSI cube simultaneously without considering the spectral–spatial similarity. When a noise-removal algorithm is used globally to the entire data set, it would not eliminate all levels of noise, effectively. Furthermore, most of the existing methods remove independent and identically distributed (i.i.d.) Gaussian noise. The real scenarios are much more complicated than this assumption. The complexity created by natural noise that has a non-i.i.d. structure leads to inefficient methods containing underestimation and invalid performance. In this article, we calculated the spatial–spectral similarity criteria by defining a set of clustering-based latent variables (CLVs) in a Bayesian framework to improve the robustness. These criteria can be extracted using the clustering operators. Then, by applying the CLV to the variational Bayesian model, we investigated a new low-rank matrix factorization denoising approach based on the proposed clustering-based latent variable (CLV-LRMF) to remove noise with the non-i.i.d. mixture of Gaussian structures. Finally, we switched to the GPU for MATLAB implementation to reduce the runtime. The experimental results show that the performance has been improved by applying the proposed CLV and demonstrate the effectiveness of the proposed CLV-LRMF over other state-of-the-art methods. Numéro de notice : A2021-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939512 Date de publication en ligne : 24/03/2021 En ligne : https://doi.org/10.1109/TGRS.2019.2939512 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97396
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 4 (April 2021) . - pp 3266 - 3276[article]Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
[article]
Titre : Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection Type de document : Article/Communication Auteurs : Zeyang Dou, Auteur ; Kun Gao, Auteur ; Xiaodian Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6550 - 6564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] distribution de Gauss
[Termes IGN] erreur
[Termes IGN] image hyperspectrale
[Termes IGN] reconstruction d'image
[Termes IGN] valeur aberranteRésumé : (auteur) Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to more than 50% improvements. Numéro de notice : A2020-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977819 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95715
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6550 - 6564[article]
Titre : Estimation parcimonieuse de biais multitrajets pour les systèmes GNSS Type de document : Thèse/HDR Auteurs : Julien Lesouple, Auteur ; Jean-Yves Tourneret, Auteur ; François Vincent, Auteur Editeur : Toulouse : Université de Toulouse Année de publication : 2019 Importance : 217 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse, spécialité : Informatique et TélécommunicationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] chaîne de Markov
[Termes IGN] correction du trajet multiple
[Termes IGN] distribution de Gauss
[Termes IGN] erreur de mesure
[Termes IGN] erreur systématique
[Termes IGN] estimation bayesienne
[Termes IGN] filtrage du signal
[Termes IGN] mesurage par GNSS
[Termes IGN] récepteur GNSS
[Termes IGN] représentation parcimonieuse
[Termes IGN] traitement du signal
[Termes IGN] trajet multipleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’évolution des technologies électroniques (miniaturisation, diminution des coûts) a permis aux GNSS (systèmes de navigation par satellites) d’être de plus en plus accessibles et donc utilisés au quotidien, par exemple par le biais d’un smartphone, ou de récepteurs disponibles dans le commerce à des prix raisonnables (récepteurs bas-coûts). Ces récepteurs fournissent à l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le récepteur et les satellites visibles entre autres. Ces récepteurs sont donc devenus très répandus pour les utilisateurs souhaitant évaluer des techniques de positionnement sans développer tout le hardware nécessaire. Les signaux issus des satellites GNSS sont perturbés par de nombreuses sources d’erreurs entre le moment où ils sont traités par le récepteurs pour estimer la mesure correspondante. Il est donc nécessaire decompenser chacune des ces erreurs afin de fournir à l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intérêt, est le phénomène de réflexion des différents signaux sur les éventuels obstacles de la scène dans laquelle se trouve l’utilisateur, appelé multitrajets. L’objectif de cette thèse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La première idée développée dans cette thèse est de supposer que ces signaux multitrajets donnent naissance à des biais additifs parcimonieux. Cette hypothèse de parcimonie permet d’estimer ces biais à l’aide de méthodes efficaces comme le problème LASSO. Plusieurs variantes ont été développés autour de cette hypothèse visant à contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxième idée explorée dans cette thèse est une technique d’estimation des erreurs de mesure GNSS à partir d’une solution de référence, qui suppose que les erreurs dues aux multitrajets peuvent se modéliser à l’aide de mélanges de Gaussiennes ou de modèles de Markov cachés. Deux méthodes de positionnement adaptées à ces modèles sont étudiées pour la navigation GNSS. Note de contenu : Introduction
1- La navigation par satellites
2- Estimation parcimonieuse pour la navigation par satellites
3- Estimation Bayésienne des hyperparamètres
4- Utilisation de mélanges de Gaussiennes pour la modélisation des erreurs GNSS
Conclusion et perspectivesNuméro de notice : 25802 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique et Télécommunication : Toulouse : 2019 nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2019INPT0020 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95044 Signaux et systèmes / André Quinquis (2019)PermalinkSystematic effects in laser scanning and visualization by confidence regions / Karl Rudolf Koch in Journal of applied geodesy, vol 10 n° 4 (December 2016)PermalinkA joint Gaussian process model for active visual recognition with expertise estimation in crowdsourcing / Chengjiang Long in International journal of computer vision, vol 116 n° 2 (15th January 2016)PermalinkConvex programming approach to robust estimation of a multivariate Gaussian model / Samuel Balmand (2016)PermalinkExtension of the linear chromodynamics model for spectral change detection in the presence of residual spatial misregistration / Karmon Vongsy in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)PermalinkProbabilités pour les sciences de l'ingénieur / Manuel Samuelides (2014)PermalinkIntroduction au calcul des probabilités et à la statistique / Jean-François Delmas (2013)PermalinkAccuracy versus precision: a primer on GPS truth / D. Rutledge in GPS world, vol 21 n° 5 (May 2010)PermalinkFuzzy classification: a case study using Landsat TM images in Iran / A.M. Lak in GIM international, vol 20 n° 7 (July 2006)PermalinkStatistical analysis of environmental space-time processes / N. Le (2006)Permalink