Descripteur
Termes IGN > géomatique > données localisées > données localisées numériques > données laser > données lidar
données lidarSynonyme(s)levé par lidarVoir aussi |
Documents disponibles dans cette catégorie (1469)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A graph attention network for road marking classification from mobile LiDAR point clouds / Lina Fang in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
[article]
Titre : A graph attention network for road marking classification from mobile LiDAR point clouds Type de document : Article/Communication Auteurs : Lina Fang, Auteur ; Tongtong Sun, Auteur ; Shuang Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] noeud
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The category of road marking is a crucial element in Mobile laser scanning systems’ (MLSs) applications such as intelligent traffic systems, high-definition maps, location and navigation services. Due to the complexity of road scenes, considerable and various categories, occlusion and uneven intensities in MLS point clouds, finely road marking classification is considered as the challenging work. This paper proposes a graph attention network named GAT_SCNet to simultaneously group the road markings into 11 categories from MLS point clouds. Concretely, the proposed GAT_SCNet model constructs serial computable subgraphs and fulfills a multi-head attention mechanism to encode the geometric, topological, and spatial relationships between the node and neighbors to generate the distinguishable descriptor of road marking. To assess the effectiveness and generalization of the GAT_SCNet model, we conduct extensive experiments on five test datasets of about 100 km in total captured by different MLS systems. Three accuracy evaluation metrics: average Precision, Recall, and of 11 categories on the test datasets exceed 91%, respectively. Accuracy evaluations and comparative studies show that our method has achieved a new state-of-the-art work on road marking classification, especially on similar linear road markings like stop lines, zebra crossings, and dotted lines. Numéro de notice : A2022-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.jag.2022.102735 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102735 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100124
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102735[article]Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
[article]
Titre : Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy Type de document : Article/Communication Auteurs : Norbert Haala, Auteur ; Michael Kölle, Auteur ; Michael Cramer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100014 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation automatisée
[Termes IGN] appariement d'images
[Termes IGN] collecte de données
[Termes IGN] compensation par faisceaux
[Termes IGN] données lidar
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] précision millimétrique
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) During the last two decades, UAV emerged as standard platform for photogrammetric data collection. Main motivation in that early phase was the cost effective airborne image collection at areas of limited size. This was already feasible by rather simple payloads like an off-the-shelf, compact camera and a navigation-grade GNSS sensor. Meanwhile, dedicated sensor systems enable applications that have not been feasible in the past. One example is the airborne collection of dense 3D point clouds at millimetre accuracies, which will be discussed in our paper. For this purpose, we collect both LiDAR and image data from a joint UAV platform and apply a so-called hybrid georeferencing. This process integrates photogrammetric bundle block adjustment with direct georeferencing of LiDAR point clouds. By these means georeferencing accuracy is improved for the LiDAR point cloud by an order of magnitude. We demonstrate the feasibility of our approach in the context of a project, which aims on monitoring of subsidence of about 10 mm/year. The respective area of interest is defined by a ship lock and its vicinity of mixed use. In that area, multiple UAV flights were captured and evaluated for a period of three years. As our main contribution, we demonstrate that 3D point accuracies at sub-centimetre level can be achieved. This is realized by joint orientation of laser scans and images in a hybrid adjustment framework, which enables accuracies corresponding to the GSD of the captured imagery. Numéro de notice : A2022-236 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100014Get rights and content Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100014Get rights and content Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100146
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100014[article]PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)
[article]
Titre : Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation Type de document : Article/Communication Auteurs : Ville Kankare, Auteur ; Ninni Saarinen, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] forêt équienne
[Termes IGN] modèle linéaire
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] variation de densitéRésumé : (auteur) Wood density is well known to vary between tree species as well as within and between trees of a certain species depending on the growing environment causing uncertainties in forest biomass and carbon storage estimation. This has created a need to develop novel methodologies to obtain wood density information over multiple tree communities, landscapes, and ecoregions. Therefore, the aim of this study was to evaluate the dependencies between structural characteristics of Scots pine (Pinus sylvestris L.) tree communities and internal wood property (i.e., mean wood density and ring width) variations at breast height. Terrestrial laser scanning was used to derive the structural characteristics of even-aged Scots pine dominated forests with varying silvicultural treatments. Pearson’s correlations and linear mixed effect models were used to evaluate the interactions. The results show that varying silvicultural treatments did not have a statistically significant effect on the mean wood density. A notably stronger effect was observed between the structural characteristics and the mean ring width within varying treatments. It can be concluded that single time terrestrial laser scanning is capable of capturing the variability of structural characteristics and their interactions with mean ring width within different silvicultural treatments but not the variation of mean wood density. Numéro de notice : A2027-208 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13030397 Date de publication en ligne : 28/02/2022 En ligne : https://doi.org/10.3390/f13030397 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100025
in Forests > vol 13 n° 3 (March 2022) . - n° 397[article]Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands / Ravi Peters in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands Type de document : Article/Communication Auteurs : Ravi Peters, Auteur ; Balazs Dukai, Auteur ; Stelios Vitalis, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] itération
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] niveau de détail
[Termes IGN] Pays-Bas
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] toit
[Termes IGN] Web Map Tile ServiceRésumé : (auteur) In this paper, we present our workflow to automatically reconstruct three-dimensional (3D) building models based on two-dimensional building polygons and a lidar point cloud. The workflow generates models at different levels of detail (LoDs) to support data requirements of different applications from one consistent source. Specific attention has been paid to make the workflow robust to quickly run a new iteration in case of improvements in an algorithm or in case new input data become available. The quality of the reconstructed data highly depends on the quality of the input data and is monitored in several steps of the process. A 3D viewer has been developed to view and download the openly available 3D data at different LoDs in different formats. The workflow has been applied to all 10 million buildings of the Netherlands. The 3D service will be updated after new input data becomes available. Numéro de notice : A2022-200 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00032R2 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00032R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 165 - 170[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Challenges related to the determination of altitudes of mountain peaks presented on cartographic sources / Katarzyna Chwedczuk in Geodetski vestnik, vol 66 n° 1 (March 2022)PermalinkComparison of UAV-based LiDAR and digital aerial photogrammetry for measuring crown-level canopy height in the urban environment / Longfei Zhou in Urban Forestry & Urban Greening, vol 69 (March 2022)PermalinkA cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkEstimating aboveground biomass of urban forest trees with dual-source UAV acquired point clouds / Jiayuan Lin in Urban Forestry & Urban Greening, vol 69 (March 2022)PermalinkLiDAR-based method for analysing landmark visibility to pedestrians in cities: case study in Kraków, Poland / Krystian Pyka in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)PermalinkTowards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) / Langning Huo in Remote sensing of environment, vol 270 (March 2022)PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)PermalinkComparing methods to extract crop height and estimate crop coefficient from UAV imagery using structure from motion / Nitzan Malachy in Remote sensing, vol 14 n° 4 (February-2 2022)PermalinkIntegrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan / Katsuto Shimizu in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)PermalinkPCEDNet: a lightweight neural network for fast and interactive edge detection in 3D point clouds / Chems-Eddine Himeur in ACM Transactions on Graphics, TOG, Vol 41 n° 1 (February 2022)Permalink