Descripteur
Termes IGN > télédétection > réalité de terrain
réalité de terrainSynonyme(s)Vérité de terrainVoir aussi |
Documents disponibles dans cette catégorie (92)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Investigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
[article]
Titre : Investigating the role of image retrieval for visual localization Type de document : Article/Communication Auteurs : Martin Humenberger, Auteur ; Yohann Cabon, Auteur ; Noé Pion, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 1811 - 1836 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] base de données d'images
[Termes IGN] estimation de pose
[Termes IGN] flou
[Termes IGN] localisation basée image
[Termes IGN] localisation basée vision
[Termes IGN] point de repère
[Termes IGN] précision de localisation
[Termes IGN] Ransac (algorithme)
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization. Numéro de notice : A2022-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01615-7 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1007/s11263-022-01615-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101070
in International journal of computer vision > vol 130 n° 7 (July 2022) . - 1811 - 1836[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Development of object detectors for satellite images by deep learning / Alissa Kouraeva (2022)
Titre : Development of object detectors for satellite images by deep learning Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 57 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 3e année, Cycle PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] angle d'incidence
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image aérienne
[Termes IGN] image Pléiades-HR
[Termes IGN] image Pléiades-Neo
[Termes IGN] jeu de données
[Termes IGN] OpenStreetMap
[Termes IGN] réalité de terrain
[Termes IGN] recalage d'imageMots-clés libres : Frame Field Learning algorithm Index. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) With various uses cases in different sectors - marine, cartography, defense - object detection in satellite images is at the heart of image processing methods. This study aims to test existing building detection algorithms and improve them with the final goal being a precise cartography of buildings for 3D reconstruction with a high level of details. The Polygonization by Frame Field Learning algorithm is tested on different types of images: aerial images (50cm resolution), satellite images with 50cm (Pleiades) and 30cm (Pleiades Neo) resolutions. The ground truth is either already provided (Digitanie) or has to be retrieved from open access databases (OSM or BD TOPO IGN). Some problems of ground truth overlap appear in Pleiades neo images due to the relative precision in positioning of different data and also due to the incidence angle, that provides a greater revisiting capability. A re-implementation of the Frame Field Learning algorithm with the PyTorch Lightning framework is done in this study, with different experiments conducted concerning the configuration of the algorithm. Note de contenu : Introduction
1- Data
2- Methods
3- Results and discussion
ConclusionNuméro de notice : 24052 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Airbus Defence and Space Geo SA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101926 Interactive semantic segmentation of aerial images with deep neural networks / Gaston Lenczner (2022)
Titre : Interactive semantic segmentation of aerial images with deep neural networks Type de document : Thèse/HDR Auteurs : Gaston Lenczner, Auteur ; Guy Le Besnerais, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Paris-Saclay, Spécialité : Traitement du signal et des imagesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] programme interactif
[Termes IGN] réalité de terrain
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Nous proposons dans cette thèse de mettre en place une collaboration entre un réseau de neurones profond et un utilisateur pour collecter rapidement des cartes de segmentation sémantiques précises d'images de télédétection. En bref, l'utilisateur interagit de manière itérative avec le réseau pour corriger ses prédictions initialement erronées. Concrètement, ces interactions sont des annotations représentant les labels sémantiques. Nos contributions se décomposent en quatre parties. Premièrement, nous proposons deux schémas d'apprentissage interactif pour intégrer les entrées de l'utilisateur dans les réseaux de neurones profonds. Le premier concatène les annotations de l'utilisateur avec les autres entrées du réseau (comme l'image RGB). Nous l'appliquons à la fois aux architectures convolutionnelles et aux Transformers. La seconde utilise les annotations comme une vérité terrain partielle pour ré-entraîner le réseau. Ensuite, nous proposons une stratégie d'apprentissage actif pour guider l'utilisateur vers les zones les plus pertinentes à annoter. Dans ce but, nous adaptons différentes fonctions d'acquisition issues de l'état de l'art pour évaluer l'incertitude du réseau de neurones. Enfin, nous proposons de modifier l'espace de sortie de l'algorithme pour l'adapter rapidement à de nouvelles classes sous faible supervision. Pour atténuer les problèmes de décalage de la classe d'arrière plan et d'oubli catastrophique inhérents à ce problème, nous comparons différentes régularisations et tirons parti d'une stratégie dite de pseudo-labeling. À travers des expériences sur plusieurs jeux de données de télédétection, nous démontrons l'efficacité et analysons les méthodes proposées. La combinaison de ces différents travaux aboutit à un framework robuste et polyvalent pour corriger de manière interactive les cartes de segmentation sémantique produites par des algorithmes d'apprentissage profond en télédétection. Note de contenu : Chapter 1. Introduction
1.1 Context
1.2 Open research questions
1.3 Contributions
1.4 Manuscript outline
1.5 Publications
Chapter 2. Related work
2.1 Understanding the stakes
2.2 Interactive learning
2.3 Metrics & datasets
Chapter 3. Fast interactive learning
3.1 Motivation & contribution
3.2 DISIR : Deep Image Segmentation with Interactive Refinements
3.3 Evaluation process
3.4 Experiments
3.5 Conclusion
Chapter 4. Interactive learning at scale
4.1 Transformers for a better propagation of the annotations
4.2 DISCA : Deep Image Segmentation with Continual Adaptation
Chapter 5. Guiding the interactions
5.1 Motivation & contributions
5.2 DIAL : Deep Interactive and Active Learning
5.3 Experiments
5.4 Conclusion
Chapter 6. Towards interactive class-incremental segmentation
6.1 Motivation & contributions
6.2 Methodology
6.3 Experiments
6.4 Conclusion
Chapter 7. Conclusion
7.1 Summary of contributions
7.2 Future worksNuméro de notice : 26906 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et des images : Paris-Saclay : 2022 Organisme de stage : Département Traitement de l’Information et Systèmes DTIS (ONERA) nature-HAL : Thèse DOI : sans Date de publication en ligne : 14/10/2022 En ligne : https://tel.hal.science/tel-03814978 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101918 A cellular-automata model for assessing the sensitivity of the street network to natural terrain / Jeeno Soa George in Annals of GIS, vol 27 n° 3 (July 2021)
[article]
Titre : A cellular-automata model for assessing the sensitivity of the street network to natural terrain Type de document : Article/Communication Auteurs : Jeeno Soa George, Auteur ; Saikat Kumar Paul, Auteur ; Richa Dhawale, Auteur Année de publication : 2021 Article en page(s) : pp 261 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] automate cellulaire
[Termes IGN] Caracas
[Termes IGN] croissance urbaine
[Termes IGN] données spatiotemporelles
[Termes IGN] Inde
[Termes IGN] Japon
[Termes IGN] modélisation spatiale
[Termes IGN] morphologie urbaine
[Termes IGN] planification urbaine
[Termes IGN] réalité de terrain
[Termes IGN] réseau routier
[Termes IGN] SingapourRésumé : (auteur) Natural and human-made features are not exclusive in settlements but interact across time and space, placing the context in constant evolution. The purpose of this paper is to search for the influence of terrain, a natural feature, on the configuration of the street network, a human-made feature, by analysing the results of two transition states of cellular automata used to model street networks. This work uses data from open-source projects and open-source applications. The first transition state models the street network considering the neighbourhood rules and randomness, assuming the natural terrain and street are exclusive. The second transition state models the street network as the product of characteristics of the terrain, neighbourhood rules, and randomness, thus assuming the natural terrain and street network interacting with one another. The model is run thirteen times for four different cities by varying the terrain characteristics and calibrated by comparing the simulated street maps with recent street maps. The results are compared and found that the CA model with the second transition state yields better simulation results than the first transition state. In one of the four cities studied, the first transition state results are similar to a specific state of the second transition state, indicating a weak inter-connectedness between the terrain and the street network in the mega-city. Further research can reveal whether the amount of inter-connectedness is specific to the city’s terrain or size. The recognition of the inter-connectedness of the road to terrain can help plan for resilient human settlements. Numéro de notice : A2021-628 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/19475683.2021.1936173 Date de publication en ligne : 03/06/2021 En ligne : https://doi.org/10.1080/19475683.2021.1936173 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98269
in Annals of GIS > vol 27 n° 3 (July 2021) . - pp 261 - 272[article]Evaluating the suitability of multi-scale terrain attribute calculation approaches for seabed mapping applications / Benjamin Misiuk in Marine geodesy, vol 44 n° 4 (July 2021)PermalinkImpact of different sampling rates on precise point positioning performance using online processing service / Serdar Erol in Geo-spatial Information Science, vol 24 n° 2 (June 2021)PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (May 2021)PermalinkHorizontal calibration of vessels with UASs / Casey O'Heran in Marine geodesy, vol 44 n° 2 (March 2021)PermalinkElevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)PermalinkQualification des données LiDAR GEDI pour le suivi de l’impact climatique sur la forêt de Südharz / Iris Jeuffrard (2021)PermalinkThe Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January-1 2021)PermalinkVNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)PermalinkMap construction algorithms: a local evaluation through hiking data / David Duran in Geoinformatica, vol 24 n° 3 (July 2020)PermalinkRethinking error estimations in geospatial data: the correct way to determine product accuracy / Qassim Abdullah in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)Permalink