Descripteur
Termes IGN > géomatique > données localisées > données localisées des bénévoles
données localisées des bénévolesSynonyme(s)VGI données collaborativesVoir aussi |
Documents disponibles dans cette catégorie (385)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project / Giles M. Foody in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
[article]
Titre : Assuring the quality of VGI on land use and land cover: experiences and learnings from the LandSense project Type de document : Article/Communication Auteurs : Giles M. Foody, Auteur ; Gavin Long, Auteur ; Michael Schultz, Auteur ; Ana-Maria Olteanu-Raimond , Auteur Année de publication : 2023 Projets : Landsense / Raimond, Ana-Maria Article en page(s) : n° 2100285 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] assurance qualité
[Termes IGN] données localisées des bénévoles
[Termes IGN] occupation du sol
[Termes IGN] qualité des données
[Termes IGN] utilisation du solRésumé : (auteur) The potential of citizens as a source of geographical information has been recognized for many years. Such activity has grown recently due to the proliferation of inexpensive location aware devices and an ability to share data over the internet. Recently, a series of major projects, often cast as citizen observatories, have helped explore and develop this potential for a wide range of applications. Here, some of the experiences and learnings gained from part of one such project, which aimed to further the role of citizen science within Earth observation and help address environmental challenges, LandSense, are shared. The key focus is on quality assurance of citizen generated data on land use and land cover especially to support analyses of remotely sensed data and products. Particular focus is directed to quality assurance checks on photographic image quality, privacy, polygon overlap, positional accuracy and offset, contributor agreement, and categorical accuracy. The discussion aims to provide good practice advice to aid future studies and help fulfil the full potential of citizens as a source of volunteered geographical information (VGI). Numéro de notice : A2023-081 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2100285 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2100285 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101337
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023] . - n° 2100285[article]Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan / Jun Yamashita in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
[article]
Titre : Quality assessment of volunteered geographic information for outdoor activities: an analysis of OpenStreetMap data for names of peaks in Japan Type de document : Article/Communication Auteurs : Jun Yamashita, Auteur ; Toshikazu Seto, Auteur ; Nobusuke Iwasaki, Auteur ; Yuichiro Nishimura, Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] Japon
[Termes IGN] montagne
[Termes IGN] OpenStreetMap
[Termes IGN] oronymie
[Termes IGN] qualité des donnéesRésumé : (auteur) Geographical studies of outdoor activities have increased in recent years with the rise in popularity of these activities worldwide, including in Japan. Volunteered geographic information (VGI) is a key tool for organizing outdoor activities as it offers a means to determine the locational information and names of places. To evaluate the quality of VGI, geospatial data generated by land survey agencies and other VGI are often utilized as reference data. However, since these reference data may not be available, other methods are necessary to assure the quality of VGI. In this study, we examined five trust indicators based on the inherent characteristics of VGI through an empirical case study. We used mountain names extracted from OpenStreetMap in Japan as data because there were almost no other VGI in the vicinity. As a result, we isolated three trust indicators, namely versions, users, and tag corrections, to examine the thematic accuracy of VGI because these were the only statistically significant indicators. However, we found that the prediction rate of thematic accuracy was very low. To improve thematic accuracy, this study recommends using the most accurate versions, applying correctly given tags, and considering the motivations and characteristics of the VGI contributors. Numéro de notice : A2022-611 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2085188 Date de publication en ligne : 01/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2085188 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101365
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Towards global scale segmentation with OpenStreetMap and remote sensing / Munazza Usmani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
[article]
Titre : Towards global scale segmentation with OpenStreetMap and remote sensing Type de document : Article/Communication Auteurs : Munazza Usmani, Auteur ; Maurizio Napolitano, Auteur ; Francesca Bovolo, Auteur Année de publication : 2023 Article en page(s) : n° 100031 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based segmentation remains challenging because of class variability. Due to the increasing popularity of crowd-sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi-source data processing. We discuss the use of data augmentation techniques and improvements to the training pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmentation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications. Numéro de notice : A2023-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2023.100031 Date de publication en ligne : 16/02/2023 En ligne : https://doi.org/10.1016/j.ophoto.2023.100031 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102807
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 8 (April 2023) . - n° 100031[article]SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images / Hao Wu in Computers, Environment and Urban Systems, vol 100 (March 2023)
[article]
Titre : SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images Type de document : Article/Communication Auteurs : Hao Wu, Auteur ; Wenting Luo, Auteur ; Anqi Lin, Auteur ; Fanghua Hao, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Lanfa Liu, Auteur ; Yan Li, Auteur Année de publication : 2023 Projets : 1-Pas de projet / Raimond, Ana-Maria Article en page(s) : n° 101921 Note générale : Bibliographie
This work was supported by the National Natural Science Foundation of China [42201468, 42071358], Postdoctoral Innovation Talents Support Program of China [BX20220128], China Postdoctoral Science Foundation [2022M721283] and Fundamental Research Funds for the Central Universities [CCNU22QN018].Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multicritère
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] détection du bâti
[Termes IGN] données localisées des bénévoles
[Termes IGN] image à très haute résolution
[Termes IGN] morphologie urbaine
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] représentation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks. Numéro de notice : A2023-125 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101921 Date de publication en ligne : 06/12/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102504
in Computers, Environment and Urban Systems > vol 100 (March 2023) . - n° 101921[article]Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination / Peter A. Johnson in Transactions in GIS, vol 27 n° 1 (February 2023)
[article]
Titre : Who owns the map? Data sovereignty and government spatial data collection, use, and dissemination Type de document : Article/Communication Auteurs : Peter A. Johnson, Auteur ; Teresa Scassa, Auteur Année de publication : 2023 Article en page(s) : pp 275 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] carte
[Termes IGN] collecte de données
[Termes IGN] diffusion de données
[Termes IGN] domaine public
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] droit d'auteur
[Termes IGN] OpenStreetMap
[Termes IGN] planification
[Termes IGN] pouvoirs publics
[Termes IGN] source de données
[Termes IGN] statut juridiqueRésumé : (auteur) Maps, created through the collection, assembly, and analysis of spatial data are used to support government planning and decision-making. Traditionally, spatial data used to create maps are collected, controlled, and disseminated by government, although over time, this role has shifted. This shift has been driven by the availability of alternate sources of data collected by private sector companies, and data contributed by volunteers to open mapping platforms, such as OpenStreetMap. In theorizing this shift, we provide examples of how governments use data sovereignty as a tool to shape spatial data collection, use, and sharing. We frame four models of how governments may navigate shifting spatial data sovereignty regimes; first, with government retaining complete control over data collection; second, with government contracting a third party to provide specific data collection services, but with data ownership and dissemination responsibilities resting with government; third, with government purchasing data under terms of access set by third party data collectors, who disseminate data to several parties, and finally, with government retreating from or relinquishing data sovereignty altogether. Within this rapidly changing landscape of data providers, we propose that governments must consider how to address data sovereignty concerns to retain their ability to control data use in the public interest. Numéro de notice : A2023-134 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.13024 Date de publication en ligne : 22/01/2023 En ligne : https://doi.org/10.1111/tgis.13024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102680
in Transactions in GIS > vol 27 n° 1 (February 2023) . - pp 275 - 289[article]Evaluation of GNSS-based volunteered geographic information for assessing visitor spatial distribution within protected areas: A case study of the Bavarian Forest National Park, Germany / Laura Horst in Applied Geography, vol 150 (January 2023)PermalinkSemantic integration of OpenStreetMap and CityGML with formal concept analysis / Somayeh Ahmadian in Transactions in GIS, vol 26 n° 8 (December 2022)PermalinkA new spatial database framework for pedestrian indoor navigation based on the OpenStreetMap tag information / Gift Dumedah in Transactions in GIS, vol 26 n° 7 (November 2022)PermalinkLocation-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)PermalinkTransfer learning from citizen science photographs enables plant species identification in UAV imagery / Salim Soltani in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkIntegration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)PermalinkA participatory trail web map based on open source technologies / Joshua Gore in International journal of cartography, vol 8 n° 2 (July 2022)PermalinkDetecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)PermalinkMining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)PermalinkVolunteered geographic information mobile application for participatory landslide inventory mapping / Raden Muhammad Anshori in Computers & geosciences, vol 161 (April 2022)Permalink