Descripteur
Termes IGN > informatique > génie logiciel > logiciel > service web > service web géographique > web mapping > globe virtuel
globe virtuelVoir aussi |
Documents disponibles dans cette catégorie (71)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach / Abebe Debele Tolche in Geocarto international, vol 37 n° 24 ([20/10/2022])
[article]
Titre : Modelling and accessing land degradation vulnerability using remote sensing techniques and the analytical hierarchy process approach Type de document : Article/Communication Auteurs : Abebe Debele Tolche, Auteur ; Megersa Adugna Gurara, Auteur ; Quoc Bao Pham, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7122 - 7142 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] dégradation des sols
[Termes IGN] Ethiopie
[Termes IGN] Google Earth
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] pédologie locale
[Termes IGN] précipitation
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] température au sol
[Termes IGN] topographie locale
[Termes IGN] vulnérabilitéRésumé : (auteur) Land degradation and desertification have recently become a critical problem in Ethiopia. Accordingly, identification of land degradation vulnerable zonation and mapping was conducted in Wabe Shebele River Basin, Ethiopia. Precipitation derived from Global Precipitation Measurement Mission (GMP), the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized difference vegetation index (NDVI) and land surface temperature (LST), topography (slope), and pedological properties (i.e., soil depth, soil pH, soil texture, and soil drainage) were used in the current study. NDVI has been considered as the most significant parameter followed by the slope, precipitation and temperature. Geospatial techniques and the Analytical Hierarchy Process (AHP) approach were used to model the land degradation vulnerable index. Validation of the results with google earth image shows the applicability of the model in the study. The result is classified into very highly vulnerable (17.06%), highly vulnerable (15.01%), moderately vulnerable (32.72%), slightly vulnerable (16.40%), and very slightly vulnerable (18.81%) to land degradation. Due to the small rate of precipitation which is vulnerable to evaporation by high temperature in the region, the downstream section of the basis is categorized as highly vulnerable to Land Degradation (LD) and vice versa in the upstream section of the basin. Moreover, the validation using the Receiver Operating Characteristic (ROC) curve analysis shows an area under the ROC curve value of 80.92% which approves the prediction accuracy of the AHP method in assessing and modelling LD vulnerability zone in the study area. The study provides a substantial understanding of the effect of land degradation on sustainable land use management and development in the basin. Numéro de notice : A2022-776 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959656 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959656 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101831
in Geocarto international > vol 37 n° 24 [20/10/2022] . - pp 7122 - 7142[article]Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine / Luis Carrasco in ISPRS Journal of photogrammetry and remote sensing, vol 191 (September 2022)
[article]
Titre : Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine Type de document : Article/Communication Auteurs : Luis Carrasco, Auteur ; Go Fujita, Auteur ; Kensuke Kito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 277 - 289 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] cartographie historique
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] Japon
[Termes IGN] phénologie
[Termes IGN] photographie aérienne
[Termes IGN] réflectance de surface
[Termes IGN] rizière
[Termes IGN] signature spectraleRésumé : (auteur) Mapping the expansion or reduction of rice fields is fundamental for food and water security, greenhouse gas emission accounting, and environmental management. The historical mapping of rice fields with satellite images is challenging because of the limited availability of remote sensing and training data from past decades. The use of phenology-based algorithms has been proposed for mapping rice fields because they can take advantage of rice fields’ characteristic spectral signature during the transplanting phase and do not need training data. However, in order to employ phenology-based algorithms effectively for the historical rice mapping of large areas, we need to incorporate automatized methods able to deal with non-usable data (e.g., cloud cover) and with spatial inconsistencies in the number of available images for each pixel. Here we propose the combination of a pixel-based, phenological algorithm with the temporal aggregation of all available Landsat images to produce national level historical maps of rice fields in Japan from the 1980s onwards. We used temporally aggregated metrics (median, percentiles, etc.), derived from spectral indices of a large number of images within the Google Earth Engine, to minimize the issue of inconsistent image availability and reduce the effects of outliers in phenology-based algorithms. We produced seven rice field maps, for the periods 1985–89, 1990–94, 1995–99, 2000–04, 2005–09, 2010–14, and 2015–19. The overall map accuracies ranged from 83% to 95% when validated with visually interpreted aerial photography. We detected a 23% decrease in the area of rice fields at a country level, although the changes varied greatly among prefectures. Here we present the first freely available historical rice field maps of Japan from the 1980s onwards, together with the source code, and a web application that enables the exploration of the maps and data relating to the derived rice field area changes. The application of temporal aggregation is promising for dealing with the gap-filling of large amounts of satellite data, reducing the issue of data outliers and providing an effective use of the historical Landsat archive for phenology-based crop detection algorithms. Our maps could greatly help researchers, conservationists and policymakers studying the drivers and consequences of rice field changes, and our methods could be extrapolated to map rice fields at large scales in other regions of the world. Numéro de notice : A2022-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.07.018 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.07.018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101527
in ISPRS Journal of photogrammetry and remote sensing > vol 191 (September 2022) . - pp 277 - 289[article]Integration of GNSS observations with volunteered geographic information for improved navigation performance / Tarek Hassan in Journal of applied geodesy, vol 16 n° 3 (July 2022)
[article]
Titre : Integration of GNSS observations with volunteered geographic information for improved navigation performance Type de document : Article/Communication Auteurs : Tarek Hassan, Auteur ; Tamer Fath-Allah, Auteur ; Mohamed Elhabiby, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 265 - 277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données GNSS
[Termes IGN] données localisées des bénévoles
[Termes IGN] Google Earth
[Termes IGN] hauteur du bâti
[Termes IGN] modélisation 3D
[Termes IGN] OpenStreetMap
[Termes IGN] positionnement par GNSS
[Termes IGN] signal GNSS
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) Pedestrian and vehicular navigation relies mainly on Global Navigation Satellite System (GNSS). Even if different navigation systems are integrated, GNSS positioning remains the core of any navigation process as it is the only system capable of providing independent solutions. However, in harsh environments, especially urban ones, GNSS signals are confronted by many obstructions causing the satellite signals to reach the receivers through reflected paths. These No-Line of Sight (NLOS) signals can affect the positioning accuracy significantly. This contribution proposes a new algorithm to detect and exclude these NLOS signals using 3D building models constructed from Volunteered Geographic Information (VGI). OpenStreetMap (OSM) and Google Earth (GE) data are combined to build the 3D models incorporated with GNSS signals in the algorithm. Real field data are used for testing and validation of the presented algorithm and strategy. The accuracy improvement, after exclusion of the NLOS signals, is evaluated employing phase-smoothed code observations. The results show that applying the proposed algorithm can improve the horizontal positioning accuracy remarkably. This improvement reaches 10.72 m, and the Root Mean Square Error (RMSE) drops by 1.64 m (46 % improvement) throughout the epochs with detected NLOS satellites. In addition, the improvement is analyzed in the Along-Track (AT) and Cross-Track (CT) directions. It reaches 6.89 m in the AT direction with a drop of 1.076 m in the RMSE value, while it reaches 8.64 m with a drop of 1.239 m in the RMSE value in the CT direction. Numéro de notice : A2022-496 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0063 Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1515/jag-2021-0063 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100986
in Journal of applied geodesy > vol 16 n° 3 (July 2022) . - pp 265 - 277[article]Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 / Fahime Arabi Aliabad in Remote sensing, vol 14 n° 13 (July-1 2022)
[article]
Titre : Investigating the ability to identify new constructions in urban areas using images from unmanned aerial vehicles, Google Earth, and Sentinel-2 Type de document : Article/Communication Auteurs : Fahime Arabi Aliabad, Auteur ; Hamid Reza Ghafarian Malamiri, Auteur ; Saeed Shojaei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3227 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification orientée objet
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] Google Earth
[Termes IGN] image captée par drone
[Termes IGN] image Sentinel-MSI
[Termes IGN] utilisation du sol
[Termes IGN] zone urbaineRésumé : (auteur) One of the main problems in developing countries is unplanned urban growth and land use change. Timely identification of new constructions can be a good solution to mitigate some environmental and social problems. This study examined the possibility of identifying new constructions in urban areas using images from unmanned aerial vehicles (UAV), Google Earth and Sentinel-2. The accuracy of the land cover map obtained using these images was investigated using pixel-based processing methods (maximum likelihood, minimum distance, Mahalanobis, spectral angle mapping (SAM)) and object-based methods (Bayes, support vector machine (SVM), K-nearest-neighbor (KNN), decision tree, random forest). The use of DSM to increase the accuracy of classification of UAV images and the use of NDVI to identify vegetation in Sentinel-2 images were also investigated. The object-based KNN method was found to have the greatest accuracy in classifying UAV images (kappa coefficient = 0.93), and the use of DSM increased the classification accuracy by 4%. Evaluations of the accuracy of Google Earth images showed that KNN was also the best method for preparing a land cover map using these images (kappa coefficient = 0.83). The KNN and SVM methods showed the highest accuracy in preparing land cover maps using Sentinel-2 images (kappa coefficient = 0.87 and 0.85, respectively). The accuracy of classification was not increased when using NDVI due to the small percentage of vegetation cover in the study area. On examining the advantages and disadvantages of the different methods, a novel method for identifying new rural constructions was devised. This method uses only one UAV imaging per year to determine the exact position of urban areas with no constructions and then examines spectral changes in related Sentinel-2 pixels that might indicate new constructions in these areas. On-site observations confirmed the accuracy of this method. Numéro de notice : A2022-572 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.3390/rs14133227 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133227 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101288
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3227[article]Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 949 - 974[article]Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])PermalinkShore zone classification from ICESat-2 data over Saint Lawrence Island / Huan Xie in Marine geodesy, vol 44 n° 5 (September 2021)PermalinkCoral habitat mapping: a comparison between maximum likelihood, Bayesian and Dempster–Shafer classifiers / Mohammad Shawkat Hossain in Geocarto international, vol 36 n° 11 ([15/06/2021])PermalinkGIS-based spatial landslide distribution analysis of district Neelum, AJ&K, Pakistan / Shah Naseer in Natural Hazards, vol 106 n° 1 (March 2021)PermalinkLandslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the indian Himalayan region: Recent developments, gaps, and future directions / Amit Batar in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)PermalinkPermalinkIntegrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images / Wen Dai in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)PermalinkA two-scale approach for estimating forest aboveground biomass with optical remote sensing images in a subtropical forest of Nepal / Upama A. Koju in Journal of Forestry Research, vol 30 n° 6 (December 2019)PermalinkMultiple-view geospatial comparison using web-based virtual globes / Liangfeng Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)PermalinkA topographically preserved road‐network tile model and optimal routing method for virtual globes / Quanhua Dong in Transactions in GIS, vol 23 n° 2 (April 2019)Permalink