Descripteur
Documents disponibles dans cette catégorie (86)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) / Yizi Chen (2023)
Titre : Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) Titre original : Vectorisation et alignement modernes des cartes historiques : Une application à l'Atlas de Paris (1789-1950) Type de document : Thèse/HDR Auteurs : Yizi Chen , Auteur ; Julien Perret , Directeur de thèse ; Joseph Chazalon, Directeur de thèse ; Clément Mallet , Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 124 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] apprentissage profond
[Termes IGN] carte ancienne
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste local
[Termes IGN] extraction automatique
[Termes IGN] jeu de données localisées
[Termes IGN] morphologie mathématique
[Termes IGN] Paris (75)
[Termes IGN] plan de ville
[Termes IGN] reconnaissance de formes
[Termes IGN] vectorisation
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les cartes sont une source unique de connaissances depuis des siècles. Ces documents historiques fournissent des informations inestimables pour analyser des transformations spatiales complexes sur des périodes importantes. Cela est particulièrement vrai pour les zones urbaines qui englobent de multiples domaines de recherche imbriqués : humanités, sciences sociales, etc. La complexité des cartes (texte, bruit, artefacts de numérisation, etc.) a entravé la capacité à proposer des approches de vectorisation polyvalentes et efficaces pendant des décennies. Dans cette thèse, nous proposons une solution apprenable, reproductible et réutilisable pour la transformation automatique de cartes raster en objets vectoriels (îlots, rues, rivières), en nous focalisant sur le problème d'extraction de formes closes. Notre approche s'appuie sur la complémentarité des réseaux de neurones convolutifs qui excellent dans et de la morphologie mathématique, qui présente de solides garanties au regard de l'extraction de formes closes tout en étant très sensible au bruit. Afin d'améliorer la robustesse au bruit des filtres convolutifs, nous comparons plusieurs fonctions de coût visant spécifiquement à préserver les propriétés topologiques des résultats, et en proposons de nouvelles. À cette fin, nous introduisons également un nouveau type de couche convolutive (CConv) exploitant le contraste des images, pour explorer les possibilités de telles améliorations à l'aide de transformations architecturales des réseaux. Finalement, nous comparons les différentes approches et architectures qui peuvent être utilisées pour implémenter chaque étape de notre chaîne de traitements, et comment combiner ces dernières de la meilleure façon possible. Grâce à une chaîne de traitement fonctionnelle, nous proposons une nouvelle procédure d'alignement d'images de plans historiques, et commençons à tirer profit de la redondance des données extraites dans des images similaires pour propager des annotations, améliorer la qualité de la vectorisation, et éventuellement détecter des cas d'évolution en vue d'analyse thématique, ou encore l'estimation automatique de la qualité de la vectorisation. Afin d'évaluer la performance des méthodes mentionnées précédemment, nous avons publié un nouveau jeu de données composé d'images de plans historiques annotées. C'est le premier jeu de données en libre accès dédié à la vectorisation de plans historiques. Nous espérons qu'au travers de nos publications, et de la diffusion ouverte et publique de nos résultats, sources et jeux de données, cette recherche pourra être utile à un large éventail d'applications liées aux cartes historiques. Note de contenu : 1- Introduction
2- Pipeline design for historical map vectorization
3- Learning edges through deep neural architectures
4- Topology-aware loss functions
5- Improving model robustness of deep edge detectors
6- Leveraging redundancies of historical maps
7- Conclusion and perspectivesNuméro de notice : 10713 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : Sciences géographiques : UGE : 2023 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://theses.hal.science/tel-04106107 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103264 Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes / Samuel Dunesme in Cartography and Geographic Information Science, vol 49 n° 6 (November 2022)
[article]
Titre : Automatic vectorization of fluvial corridor features on historical maps to assess riverscape changes Type de document : Article/Communication Auteurs : Samuel Dunesme , Auteur ; Hervé Piegay, Auteur ; Sébastien Mustière , Auteur Année de publication : 2022 Projets : EUR H20'Lyon / Article en page(s) : pp 512 - 527 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] automatisation
[Termes IGN] carte ancienne
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] cours d'eau
[Termes IGN] détection de changement
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] réseau fluvial
[Termes IGN] réseau hydrographique
[Termes IGN] vectorisationRésumé : (auteur) The vectorization of historical maps is an important scientific issue for understanding the dynamics of change recorded by territories. Historical maps are potentially an excellent source of data for characterizing river changes at large scales. The use of vectorized data is essential for such characterization, as well as for highlighting changes in the planform alignment of such reaches over time. At a regional network scale of several thousand kilometers of river, such work requires the vectorization of several hundred or even thousands of maps. This work proposes an automated vectorization procedure for the hydrographic network detailed in the cartographic resources of the IGN (the French National Mapping Agency). The ultimate goal is to use these historical maps to track the planform evolution of the elementary landscape units (water, bare banks, and riparian vegetation) that constitute river corridors at the basin network scale. The Historical Maps Vectorization Toolbox was developed to automatically vectorize river corridor objects (sediment banks, water surfaces, and vegetation polygons) with a high level of accuracy. The toolbox works with a 2-step process: first it classifies the colors detected on the map, then it reconstructs the objects of the fluvial corridor. We also demonstrate a practical use of the toolbox through measuring changes in the surface area of river networks of several hundred kilometers. Numéro de notice : A2022-604 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2022.2091661 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.1080/15230406.2022.2091661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102073
in Cartography and Geographic Information Science > vol 49 n° 6 (November 2022) . - pp 512 - 527[article]Historical Vltava River valley–various historical sources within web mapping environment / Jiří Krejčí in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
[article]
Titre : Historical Vltava River valley–various historical sources within web mapping environment Type de document : Article/Communication Auteurs : Jiří Krejčí, Auteur ; Jiří Cajthaml, Auteur Année de publication : 2022 Article en page(s) : n° 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] ArcGIS
[Termes IGN] carte ancienne
[Termes IGN] changement d'utilisation du sol
[Termes IGN] données anciennes
[Termes IGN] géoréférencement
[Termes IGN] modélisation 3D
[Termes IGN] point d'appui
[Termes IGN] République Tchèque
[Termes IGN] rivière
[Termes IGN] système d'information historique
[Termes IGN] vectorisation
[Termes IGN] web mappingRésumé : (auteur) The article deals with a comprehensive information system of the historic Vltava River valley. This system contains a number of resources, which are described. For old maps, which are the basis of the whole system, their georeferencing and potential problems in creating seamless mosaics are described. Other sources of data include old photographs, which are localized and stored in the system, along with the definition point of the place from which they were probably taken. The vectorization of data is described, not only for area features used for the analysis of land-use changes, but also for the vectorization of contours. These were vectorized from old maps and are substantial for the creation of historic DEM. Vectorized footprints of buildings and vectors of other functional areas subsequently serve as a basis for the procedural modeling of the virtual 3D landscape. The creation of such a complex and broad information system cannot be described in one article. The aim of this text is to draw attention to a possible approach to the presentation and visualization of the historic landscape, along with links to important documents. Numéro de notice : A2022-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010035 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.3390/ijgi11010035 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99380
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 35[article]Comparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies / Vadim Belenok in Geodesy and cartography, vol 47 n° 4 (December 2021)
[article]
Titre : Comparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies Type de document : Article/Communication Auteurs : Vadim Belenok, Auteur ; Yuriy Velikodsky, Auteur ; Oleksandr Nikolaienko, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 191 - 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse comparative
[Termes IGN] ArcGIS
[Termes IGN] carte topographique
[Termes IGN] contour
[Termes IGN] données altimétriques
[Termes IGN] image SRTM
[Termes IGN] interpolation linéaire
[Termes IGN] interpolation polynomiale
[Termes IGN] modèle numérique de surface
[Termes IGN] Python (langage de programmation)
[Termes IGN] régression
[Termes IGN] Russie
[Termes IGN] vectorisationRésumé : (auteur) The article considers the question of estimating the accuracy of interpolation methods for building digital elevation models using Soviet topographic maps. The territory of the Kursk region of the Russian Federation was used as the study area, because it is located on the Central Russian Upland and characterized by the complex structure of the vertical and horizontal dissection of the relief. Contour lines automatically obtained using a Python algorithm were used as the initial elevation data to build a digital elevation model. Digital elevation models obtained by thirteen different interpolation methods in ArcGIS and Surfer software were built and analyzed. Special attention is paid to the ANUDEM method, which allows to obtain hydrologically correct digital elevation models. Recommendations for the use of one or another method of interpolation are given. The results can be useful for professionals who use topographic maps in their work and deals with the design using digital elevation models. Numéro de notice : A2021-925 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3846/gac.2021.13208 Date de publication en ligne : 13/12/2021 En ligne : https://doi.org/10.3846/gac.2021.13208 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99287
in Geodesy and cartography > vol 47 n° 4 (December 2021) . - pp 191 - 199[article]Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization / Jiali Han in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization Type de document : Article/Communication Auteurs : Jiali Han, Auteur ; Mengqi Rong, Auteur ; Hanqing Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 57 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] espace intérieur
[Termes IGN] maillage
[Termes IGN] programmation linéaire
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] vectorisationRésumé : (Auteur) Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and floor structures by Markov Random Field (MRF) labeling on the arrangement. Finally, the wall structures are modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. Merging the respective results yields the final model. The experimental results show that the proposed method could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data compared with other state-of-the-art approaches. Numéro de notice : A2021-371 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.019 Date de publication en ligne : 15/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97779
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 57 - 74[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Indoor mapping and modeling by parsing floor plan images / Yijie Wu in International journal of geographical information science IJGIS, vol 35 n° 6 (June 2021)PermalinkAutomatic object extraction from airborne laser scanning point clouds for digital base map production / Elyta Widyaningrum (2021)PermalinkCombining deep learning and mathematical morphology for historical map segmentation / Yizi Chen (2021)PermalinkPermalinkVectorization of historical maps using deep edge filtering and closed shape extraction / Yizi Chen (2021)PermalinkAssessing historical maps for characterizing fluvial corridor changes at a regional network scale / Samuel Dunesme in Cartographica, vol 55 n° 4 (Winter 2020)PermalinkCan we characterize river corridor evolution at a continental scale from historical topographic maps? A first assessment from the comparison of four countries / J. Horacio Garcia in River Research and Applications, vol 36 n° 6 (July 2020)PermalinkA discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkDétection et vectorisation automatiqued’objets linéaires dans des nuages de points de voirie / Etienne Barçon (2020)PermalinkPermalink