Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > hydrographie > océanographie > eaux côtières
eaux côtièresSynonyme(s)eaux littoralesVoir aussi |
Documents disponibles dans cette catégorie (48)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? / Katja Kuhwald in Remote sensing in ecology and conservation, vol 8 n° 3 (June 2022)
[article]
Titre : How can Sentinel-2 contribute to seagrass mapping in shallow, turbid Baltic Sea waters? Type de document : Article/Communication Auteurs : Katja Kuhwald, Auteur ; Jens Schneider Von Deimling, Auteur ; Philipp Schubert, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 328 - 346 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Allemagne
[Termes IGN] Baltique, mer
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] eaux côtières
[Termes IGN] fond marin
[Termes IGN] herbier marin
[Termes IGN] image aérienne
[Termes IGN] image Sentinel-MSI
[Termes IGN] lidar bathymétrique
[Termes IGN] turbidité des eauxRésumé : (auteur) Seagrass meadows are one of the most important benthic habitats in the Baltic Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the predominant seagrass species in the Baltic Sea, are lacking in the shallow coastal waters. Sentinel-2 turned out to be valuable for mapping coastal benthic habitats in clear waters, whereas knowledge in turbid waters is rare. Here, we transfer a clear water mapping approach to turbid waters to assess how Sentinel-2 can contribute to seagrass mapping in the Western Baltic Sea. Sentinel-2 data were atmospherically corrected using ACOLITE and subsequently corrected for water column effects. To generate a data basis for training and validating random forest classification models, we developed an upscaling approach using video transect data and aerial imagery. We were able to map five coastal benthic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass dominated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown algae (3.5 km²) in a study area along the northern German coastline. Validation with independent data pointed out that water column correction does not significantly improve classification results compared to solely atmospherically corrected data (balanced overall accuracies ~0.92). Within optically shallow waters (0–4 m), per class and overall balanced accuracies (>0.82) differed marginally depending on the water depth. Overall balanced accuracy became worse ( Numéro de notice : A2022-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1002/rse2.246 Date de publication en ligne : 07/12/2021 En ligne : https://doi.org/10.1002/rse2.246 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100995
in Remote sensing in ecology and conservation > vol 8 n° 3 (June 2022) . - pp 328 - 346[article]Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 / Nima Pahlevan in Remote sensing of environment, vol 270 (March 2022)
[article]
Titre : Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3 Type de document : Article/Communication Auteurs : Nima Pahlevan, Auteur ; Brandon Smith, Auteur ; Krista Alikas, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112860 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] apprentissage automatique
[Termes IGN] chlorophylle
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] correction atmosphérique
[Termes IGN] données multisources
[Termes IGN] eaux côtières
[Termes IGN] image Landsat-OLI
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] matière organique
[Termes IGN] Oregon (Etats-Unis)
[Termes IGN] qualité des eauxRésumé : (auteur) Constructing multi-source satellite-derived water quality (WQ) products in inland and nearshore coastal waters from the past, present, and future missions is a long-standing challenge. Despite inherent differences in sensors’ spectral capability, spatial sampling, and radiometric performance, research efforts focused on formulating, implementing, and validating universal WQ algorithms continue to evolve. This research extends a recently developed machine-learning (ML) model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; Smith et al., 2021), to the inverse problem of simultaneously retrieving WQ indicators, including chlorophyll-a (Chla), Total Suspended Solids (TSS), and the absorption by Colored Dissolved Organic Matter at 440 nm (acdom(440)), across a wide array of aquatic ecosystems. We use a database of in situ measurements to train and optimize MDN models developed for the relevant spectral measurements (400–800 nm) of the Operational Land Imager (OLI), MultiSpectral Instrument (MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat-8, Sentinel-2, and Sentinel-3 missions, respectively. Our two performance assessment approaches, namely hold-out and leave-one-out, suggest significant, albeit varying degrees of improvements with respect to second-best algorithms, depending on the sensor and WQ indicator (e.g., 68%, 75%, 117% improvements based on the hold-out method for Chla, TSS, and acdom(440), respectively from MSI-like spectra). Using these two assessment methods, we provide theoretical upper and lower bounds on model performance when evaluating similar and/or out-of-sample datasets. To evaluate multi-mission product consistency across broad spatial scales, map products are demonstrated for three near-concurrent OLI, MSI, and OLCI acquisitions. Overall, estimated TSS and acdom(440) from these three missions are consistent within the uncertainty of the model, but Chla maps from MSI and OLCI achieve greater accuracy than those from OLI. By applying two different atmospheric correction processors to OLI and MSI images, we also conduct matchup analyses to quantify the sensitivity of the MDN model and best-practice algorithms to uncertainties in reflectance products. Our model is less or equally sensitive to these uncertainties compared to other algorithms. Recognizing their uncertainties, MDN models can be applied as a global algorithm to enable harmonized retrievals of Chla, TSS, and acdom(440) in various aquatic ecosystems from multi-source satellite imagery. Local and/or regional ML models tuned with an apt data distribution (e.g., a subset of our dataset) should nevertheless be expected to outperform our global model. Numéro de notice : A2022-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112860 Date de publication en ligne : 04/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112860 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99705
in Remote sensing of environment > vol 270 (March 2022) . - n° 112860[article]Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Belgique
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] eaux côtières
[Termes IGN] image Sentinel-OLCI
[Termes IGN] particule
[Termes IGN] rayonnement infrarouge
[Termes IGN] réflectance
[Termes IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-476 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Adriatique, mer
[Termes IGN] bathymétrie
[Termes IGN] chlorophylle
[Termes IGN] correction atmosphérique
[Termes IGN] couleur de l'océan
[Termes IGN] eaux côtières
[Termes IGN] image Sentinel-MSI
[Termes IGN] incertitude spectrale
[Termes IGN] matière organique
[Termes IGN] Méditerranée, mer
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 Date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]A method of hydrographic survey technology selection based on the decision tree supervised learning / Ivana Golub Medvešek (2021)
Titre : A method of hydrographic survey technology selection based on the decision tree supervised learning Type de document : Thèse/HDR Auteurs : Ivana Golub Medvešek, Auteur ; Hrvoje Dodig, Directeur de thèse ; Nenad Leder, Directeur de thèse Editeur : University of Split Année de publication : 2021 Importance : 106 p. Format : 21 x 30 cm Note générale : bibliographie
Dissertation submitted for the degree of Doctor of PhilosophyLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bathymétrie
[Termes IGN] arbre de décision
[Termes IGN] carte marine
[Termes IGN] classification dirigée
[Termes IGN] combinaison linéaire ponderée
[Termes IGN] Croatie
[Termes IGN] eaux côtières
[Termes IGN] levé hydrographique
[Termes IGN] lever bathymétrique
[Termes IGN] profondeur
[Termes IGN] sécurité maritimeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Hydrographic survey or seabed mapping plays an important role in achieving better maritime safety, especially in coastal waters. Due to advances in survey technologies, it becomes important to choose well-suited technology for a specific area. Moreover, various technologies have various ranges of equipment and manufacturers, as well as characteristics. Therefore, in this thesis, a proposed method of a hydrographic survey, i.e., identifying the appropriate technology, has been developed. The method is based on a reduced elimination matrix, decision tree supervised learning, and multicriteria decision methods. The available technologies were: SBES (research vessel), SBES+SSS (research vessel), MBES (research vessel), MBES (research vessel)+SBES (small boat), LIDAR (UAV), SDB (satellite sensors) and they are applied as a case study of Kaštela Bay. The optimal technology for Kaštela Bay study case was MBES (research vessel) and MBES (research vessel) + SBES (small boat) with a score of 0.97. Then with a score of 0.82 follows the SDB technology. Other available alternatives have a significantly lower score. It is a small evident difference between the three alternatives SBES (research vessel), SBES+SSS (research vessel), and LIDAR, which have a WSM score in the range from 0.58 – 0.65. Note de contenu : 1- Introduction
2- Basic characteritics of international hydrographic organizations and hydrographic survey
3- Analysis and evaluation of hydrographic surveys
4- Analysis of parameters as a function of hydrographic survey cost
5- Metodology of making the optimal hydrographic survey technologies solution
6- Case study
7- Concluding remarks
8- Literature
9- List of figures
10- List of tables
11- BiblographyNuméro de notice : 28494 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences techniques : Split : Croatie :2021 Organisme de stage : Faculty of Maritime Studies (University of Split) DOI : sans En ligne : https://repozitorij.pfst.unist.hr/islandora/object/pfst:1069 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99231 The Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January-1 2021)PermalinkValidation of Sentinel-3A SRAL coastal sea level data at high posting rate: 80 Hz / Ana Aldarias in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)PermalinkPermalinkTélédétection multispectrale et hyperspectrale des eaux littorales turbides / Morgane Larnicol (2018)PermalinkAtmospheric correction over coastal waters using multilayer neural networks / Yongzhen Fan in Remote sensing of environment, vol 199 (15 September 2017)PermalinkTélédétection pour l'observation des surfaces continentales, Volume 5. Observation des surfaces continentales par télédétection 3 / Nicolas Baghdadi (2017)PermalinkCoastal and marine ecological changes and fish cage culture development in Phu Quoc, Vietnam (2001 to 2011) / Diep Thi Hong Nguyen in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)PermalinkLarge-scale water classification of coastal areas using airborne topographic lidar data / Julien Smeeckaert (juillet 2013)PermalinkOutils de modélisation SIG pour l'étude de la vulnérabilité côtière / Elmdari Souhail (2013)PermalinkIntegrating Landsat-7 imagery with physics-based models for quantitative mapping of coastal waters near river discharges / Nima Pahlevan in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 11 (November 2012)Permalink