Descripteur
Termes IGN > télédétection > télédétection électromagnétique > indice de végétation > Enhanced vegetation index
Enhanced vegetation indexSynonyme(s)EVIVoir aussi |
Documents disponibles dans cette catégorie (23)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
[article]
Titre : Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies Type de document : Article/Communication Auteurs : Guangqin Song, Auteur ; Shengbiao Wu, Auteur ; Calvin K.F. Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] diagnostic foliaire
[Termes IGN] Enhanced vegetation index
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tropicale
[Termes IGN] Panama
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] superpixel
[Termes IGN] variation saisonnièreRésumé : (auteur) Tropical leaf phenology—particularly its variability at the tree-crown scale—dominates the seasonality of carbon and water fluxes. However, given enormous species diversity, accurate means of monitoring leaf phenology in tropical forests is still lacking. Time series of the Green Chromatic Coordinate (GCC) metric derived from tower-based red–greenblue (RGB) phenocams have been widely used to monitor leaf phenology in temperate forests, but its application in the tropics remains problematic. To improve monitoring of tropical phenology, we explored the use of a deep learning model (i.e. superpixel-based Residual Networks 50, SP-ResNet50) to automatically differentiate leaves from non-leaves in phenocam images and to derive leaf fraction at the tree-crown scale. To evaluate our model, we used a year of data from six phenocams in two contrasting forests in Panama. We first built a comprehensive library of leaf and non-leaf pixels across various acquisition times, exposure conditions and specific phenocams. We then divided this library into training and testing components. We evaluated the model at three levels: 1) superpixel level with a testing set, 2) crown level by comparing the model-derived leaf fractions with those derived using image-specific supervised classification, and 3) temporally using all daily images to assess the diurnal stability of the model-derived leaf fraction. Finally, we compared the model-derived leaf fraction phenology with leaf phenology derived from GCC. Our results show that: 1) the SP-ResNet50 model accurately differentiates leaves from non-leaves (overall accuracy of 93%) and is robust across all three levels of evaluations; 2) the model accurately quantifies leaf fraction phenology across tree-crowns and forest ecosystems; and 3) the combined use of leaf fraction and GCC helps infer the timing of leaf emergence, maturation and senescence, critical information for modeling photosynthetic seasonality of tropical forests. Collectively, this study offers an improved means for automated tropical phenology monitoring using phenocams. Numéro de notice : A2022-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.023 Date de publication en ligne : 10/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99057
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 19 - 33[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency / Jiaqi Tian in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
[article]
Titre : Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency Type de document : Article/Communication Auteurs : Jiaqi Tian, Auteur ; Xiaolin Zhu, Auteur ; Jin Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] filtrage du bruit
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] lissage de données
[Termes IGN] nébulosité
[Termes IGN] phénologie
[Termes IGN] série temporelleRésumé : (auteur) Vegetation phenology can be extracted from vegetation index (VI) time series of satellite data. The maximum value composite (MVC) procedure and smoothing filters have been conventionally used as standard methods to exclude noises in the VI time series before extracting the vegetation phenology [e.g., National Aeronautics and Space Administration (NASA) VNP22Q2 and United States Geological Survey (USGS) MCD12Q2 phenology products]. However, it is unclear how to optimize the MVC and smoothing filters to produce the most accurate phenology metrics given that cloud frequency varies spatially. This study designed two simulation experiments, namely (1) using only the MVC and (2) using the MVC and smoothing filters together to smooth the enhanced vegetation index (EVI) time series for detecting spring phenology, i.e., start of season (SOS), over the northern hemisphere (north of 30°N) on a 5° × 5° grid cell basis by the inflection point and relative threshold algorithms. The results revealed that (1) the inappropriate selection of MVC periods (e.g., too short or too long) affected the accuracy of the SOS extracted by both phenology detection algorithms; (2) a filtering process with optimal parameters can reduce the effects of the MVC period on SOS extraction to a considerable extent, i.e., 65% and 61% for iterative Savitzky–Golay (SG) and penalized cubic splines (SP) filters, respectively; (3) optimal parameters for both the MVC and smoothing filters showed significant spatial heterogeneity; and (4) validation with ground PhenoCam data indicated that optimal parameters of the MVC and smoothing filters can produce more accurate results than official vegetation phenology products that use uniform parameters. Specifically, the R2 values of the NASA product and the USGS product were 0.58 and 0.67, which were increased to 0.70 and 0.81, respectively, by the optimal smoothing process. Optimal parameters of the MVC and smoothing filters provided by this study in each 5° × 5° sub-region may help future studies to improve the accuracy of phenology detection from satellite VI time series. Numéro de notice : A2021-653 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.003 Date de publication en ligne : 14/08/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98383
in ISPRS Journal of photogrammetry and remote sensing > vol 180 (October 2021) . - pp 29 - 44[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021101 SL Revue Centre de documentation Revues en salle Disponible 081-2021103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing / Elliott White Jr in Remote sensing of environment, vol 258 (June 2021)
[article]
Titre : Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing Type de document : Article/Communication Auteurs : Elliott White Jr, Auteur ; David Kaplan, Auteur Année de publication : 2021 Article en page(s) : n° 112385 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] eau de mer
[Termes IGN] Enhanced vegetation index
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] littoral
[Termes IGN] Louisiane (Etats-Unis)
[Termes IGN] marais
[Termes IGN] Mexique (golfe du)
[Termes IGN] montée du niveau de la mer
[Termes IGN] salinité
[Termes IGN] série temporelleRésumé : (auteur) Coastal floodplain swamps (CFS) are an important part of the coastal wetland mosaic, however they are threatened due to accelerated rates of sea level rise and saltwater intrusion (SWI). While remote sensing-based detection of wholesale coastal ecosystem shifts (i.e., from forest to marsh) are relatively straightforward, assessments of chronic, low-level SWI into CFS using remote sensing have yet to be developed and can provide a critical early-warning signal of ecosystem deterioration. In this study, we developed nine ecologically-based hypotheses to test whether remote sensing data could be used to reliably detect the presence of CFS experiencing SWI. Hypotheses were motivated by field- and literature-based understanding of the phenological and vegetative dynamics of CFS experiencing SWI relative to unimpacted, control systems. Hypotheses were organized into two primary groups: those that analyzed differences in summary measures (e.g., median and distribution) between SWI-impacted and unimpacted control sites and those that examined timeseries trends (e.g., sign and magnitude of slope). The enhanced vegetation index (EVI) was used as a proxy for production/biomass and was generated using MODIS surface reflectance data spanning 2000 to 2018. Experimental sites (n = 8) were selected from an existing network of long-term monitoring sites and included 4 pairs of impacted/non-impacted CFS across the northern Gulf of Mexico from Texas to Florida. The four best-supported hypotheses (81% across all sties) all used summary statistics, indicating that there were significant differences in the EVI of CFS experiencing chronic, low-level SWI compared to controls. These hypotheses were tested using data across a large and diverse region, supporting their implementation by researchers and managers seeking to identify CFS undergoing the first phases of SWI. In contrast, hypotheses that assessed CFS change over time were poorly supported, likely due to the slow and variable pace of ecological change, relatively short remote sensing data record, and/or specific site histories. Overall, these results show that remote sensing data can be used to identify differences in CFS vegetation associated with long-term, low-level SWI, but further methodological advancements are needed to reliably detect the temporal transition process. Numéro de notice : A2021-444 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112385 Date de publication en ligne : 12/03/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112385 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97851
in Remote sensing of environment > vol 258 (June 2021) . - n° 112385[article]Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
[article]
Titre : Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Charlotte Z. Smith, Auteur ; Hiroki Yoshioka, Auteur Année de publication : 2021 Article en page(s) : n° 112344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Enhanced vegetation index
[Termes IGN] image Aqua-MODIS
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Nevada (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance du solRésumé : (auteur) Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous studies have evaluated how well VI products capture variations in vegetation biophysical or physiological conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ reflectance measurements acquired over the 1 km-by−1 km Radiometric Calibration Test Site (RadCaTS) located on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a reference. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with the RadCaTS counterparts and across the three sensors than the satellite EVI. Numéro de notice : A2021-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112344 Date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97370
in Remote sensing of environment > vol 257 (May 2021) . - n° 112344[article]
Titre : Remote Sensing Type de document : Monographie Auteurs : Andrew Hammond, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2021 Importance : 140 p. ISBN/ISSN/EAN : 978-1-83880-978-2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] Amérique du sud
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données spatiotemporelles
[Termes IGN] Enhanced vegetation index
[Termes IGN] géostatistique
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] Inde
[Termes IGN] mésosphère
[Termes IGN] précision stéréoscopique
[Termes IGN] sciences naturelles
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] stratosphère
[Termes IGN] système d'information géographique
[Termes IGN] température au sol
[Termes IGN] troposphèreIndex. décimale : 35.00 Télédétection - généralités Résumé : (Editeur) This Edited Volume is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Remote Sensing. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on this field of study, and open new possible research paths for further novel developments. Note de contenu : 1. Lidar Observations in South America. Part I - Mesosphere and Stratosphere
2. Lidar Observations in South America. Part II - Troposphere
3. Application of Remote Sensing in Natural Sciences
4. Assessment of Ecological Disturbance Caused by Flood and Fire in Assam Forests, India, Using MODIS Time Series Data of 2001-2011
5. Delineation of Open-Pit Mining Boundaries on Multispectral Imagery
6. Stereoscopic Precision of the Large Format Digital Cameras
7. Remote Sensing Applications in Disease MappingNuméro de notice : 26799 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.87829 Date de publication en ligne : 08/12/2021 En ligne : https://doi.org/10.5772/intechopen.87829 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100066 Using spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation / Kirsten J. Lees in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)PermalinkWavelet and non-parametric statistical based approach for long term land cover trend analysis using time series EVI data / Niraj Priyadarshi in Geocarto international, vol 35 n° 5 ([01/04/2020])PermalinkFeasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat / Radoslaw Gurdak in Geoinformation issues, Vol 10 n°1 (2018)PermalinkAssessment of different vegetation parameters for parameterizing the coupled water cloud model and advanced integral equation model for soil moisture retrieval using time series Sentinel-1A data / Long Wang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)PermalinkEstimating forest canopy cover in black locust (Robinia pseudoacacia L.) plantations on the loess plateau using random forest / Qingxia Zhao in Forests, vol 9 n° 10 (October 2018)PermalinkA new algorithm predicting the end of growth at five evergreen conifer forests based on nighttime temperature and the enhanced vegetation index / Huanhuan Yuan in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)PermalinkAn improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data / Li Zhuo in ISPRS Journal of photogrammetry and remote sensing, vol 142 (August 2018)PermalinkImproving the prediction of African savanna vegetation variables using time series of MODIS products / Miriam Tsalyuk in ISPRS Journal of photogrammetry and remote sensing, vol 131 (September 2017)PermalinkPan-sharpening of Landsat-8 images and its application in calculating vegetation greenness and canopy water contents / Khan Rubayet Rahaman in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)PermalinkPotential of satellite-derived ecosystem functional attributes to anticipate species range shifts / Domingo Alcaraz-Segura in International journal of applied Earth observation and geoinformation, vol 57 (May 2017)Permalink