Descripteur
Documents disponibles dans cette catégorie (49)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification / Divyesh Varade in Geocarto international, vol 36 n° 15 ([15/08/2021])
[article]
Titre : Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Ajay K. Maurya, Auteur ; Onkar Dikshit, Auteur Année de publication : 2021 Article en page(s) : pp 1709 - 1731 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] bande spectrale
[Termes IGN] classification floue
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] distribution spatiale
[Termes IGN] entropie
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Inde
[Termes IGN] manteau neigeux
[Termes IGN] neige
[Termes IGN] réflectance spectraleRésumé : (auteur) Information on the spatial and temporal extent of snow cover distribution is a significant input in hydrological processes and climate models. Although hyperspectral remote sensing provides significant opportunities in the assessment of land cover, the applications of such data are limited in the snow-covered alpine regions. A major issue with hyperspectral data is the larger dimensionality. Feature selection methods are often used to derive the most informative subset of bands from the hyperspectral data. In this study, a band selection technique is proposed which utilizes the mutual information (MI) between hyperspectral bands and a reference band. The first principal component of the hyperspectral data is selected as the reference band. Two variants of this approach are proposed involving preclustering of bands using: (1) the k-means and (2) the fuzzy k-means algorithms. The MI is derived from weighted entropy of the hyperspectral band and the reference band. The weights are computed from the cluster distance ratio and the cluster membership function for the k-means and fuzzy k-means algorithm, respectively. The selected bands were classified using random forest classifier. The proposed methods are evaluated with four datasets, two Hyperion datasets corresponding to the geographical locations of Dhundi and Solang in India, corresponding to snow covered terrain and two benchmark AVIRIS datasets of Indian Pines and Salinas. The average classification accuracy (0.995 and 0.721 for Dhundi and Solang datasets, respectively) for the proposed approach were observed to be better as compared with those from other state of the art techniques. Numéro de notice : A2021-568 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1665717 Date de publication en ligne : 18/09/2019 En ligne : https://doi.org/10.1080/10106049.2019.1665717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98183
in Geocarto international > vol 36 n° 15 [15/08/2021] . - pp 1709 - 1731[article]Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
[article]
Titre : Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands Type de document : Article/Communication Auteurs : Bappa Das, Auteur ; Rabi N. Sahoo, Auteur ; Sourabh Pargal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1415 - 1432 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] blé (céréale)
[Termes IGN] canopée
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] séparateur à vaste marge
[Termes IGN] spectroradiomètreRésumé : (auteur) Successful retrieval of leaf area index (LAI) from hyperspectral remote sensing relies on the proper selection of indices or multivariate models. The objectives of the research work were to identify best vegetation index and multivariate model based on canopy reflectance and LAI measured at different growth stages of wheat. Comparison of existing indices revealed optimized soil-adjusted vegetation index (OSAVI) as the best index based on R2 of calibration, validation and root mean square error of validation. Proposed ratio index (RI; R670, R845) and normalized difference index (NDI; R670, R845) provided comparable performance with the existing vegetation indices (R2 = 0.65 and 0.62 for RI and NDI, respectively, during validation). Among the multivariate models, partial least squares regression (PLSR) model with Hyperion band configuration performed the best during validation (R2 = 0.80 and RMSE = 0.58 m2 m−2). Our results manifested the opportunities for developing biophysical products based on satellite sensors. Numéro de notice : A2020-607 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581271 Date de publication en ligne : 28/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95967
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1415 - 1432[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 RAB Revue Centre de documentation En réserve L003 Disponible Dimension reduction methods applied to coastline extraction on hyperspectral imagery / Ozan Arslan in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Dimension reduction methods applied to coastline extraction on hyperspectral imagery Type de document : Article/Communication Auteurs : Ozan Arslan, Auteur ; özer Akyürek, Auteur ; Sinasi Kaya, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 376 - 390 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] Bosphore, détroit du
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de contours
[Termes IGN] extraction
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Istanbul (Turquie)
[Termes IGN] littoral
[Termes IGN] rapport signal sur bruit
[Termes IGN] réduction
[Termes IGN] télédétection
[Termes IGN] trait de côteRésumé : (auteur) In this study, dimensionality reduction (DR) methods on a hyperspectral dataset to explore the influence on the process of extraction of coastlines were examined and performance of different DR algorithms on the detection of coastline in Bosphorus, Istanbul was investigated. Among these methods, principal component (PC) analysis, maximum noise fraction and independent component (IC) analysis were used in the experiments with the aim of comparing. The study was carried out using these well-known DR techniques on a real hyperspectral image, an Hyperion data set with 161 bands, in the course of the experiments. Three different classifiers (i.e. ML, SVM and neural network) were used for the classification of dimensionally reduced and original images to detect coastline in the region. The DR results were evaluated quantitatively and visually in order to determine the reduced dimensions of the image subsets. Findings show that there is no significant influence of using DR methods on the dataset on the detection of coastline. Numéro de notice : A2020-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520920 Date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520920 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94690
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 376 - 390[article]Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Anudeep Sure, Auteur ; Onkar Dikshit, Auteur Année de publication : 2019 Article en page(s) : pp 1552 - 1567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] classification dirigée
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] réflectance spectrale
[Termes IGN] utilisation du solRésumé : (auteur) This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. Numéro de notice : A2019-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497096 Date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497096 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94101
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1552 - 1567[article]Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data / Alfonso Fernández-Manso in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)PermalinkDiscrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])PermalinkSensitivity analysis of pansharpening in hyperspectral change detection / Seyd Teymoor Seydi in Applied geomatics, vol 10 n° 1 (March 2018)PermalinkUrban land use/land cover discrimination using image-based reflectance calibration methods for hyperspectral data / Shailesh S. Deshpande in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 5 (May 2017)PermalinkEvaluating EO1-Hyperion capability for mapping conifer and broadleaved forests / Nicola Puletti in European journal of remote sensing, vol 49 n° 1 (2016)PermalinkTracking the seasonal dynamics of boreal forest photosynthesis using EO-1 hyperion reflectance : sensitivity to structural and illumination effects / Rocío Hernández-Clemente in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)PermalinkSequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkMultispectral sensor spectral resolution simulations for generation of hyperspectral vegetation indices from Hyperion data / Prabir Das in Geocarto international, vol 30 n° 5 - 6 (May - July 2015)PermalinkMediterranean forest species mapping using classification of Hyperion imagery / Georgia Galidaki in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)PermalinkPrediction of the presence of topsoil nitrogen from spaceborne hyperspectral data / Binny Gopal in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)Permalink