Descripteur
Termes IGN > sciences naturelles > physique > métrologie > étalonnage > étalonnage d'instrument > étalonnage de capteur (imagerie) > étalonnage de chambre métrique
étalonnage de chambre métriqueVoir aussi |
Documents disponibles dans cette catégorie (85)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Spherically optimized RANSAC aided by an IMU for Fisheye Image Matching / Anbang Liang in Remote sensing, vol 13 n°10 (May-2 2021)
[article]
Titre : Spherically optimized RANSAC aided by an IMU for Fisheye Image Matching Type de document : Article/Communication Auteurs : Anbang Liang, Auteur ; Qingquan Li, Auteur ; Zhipeng Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2017 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] centrale inertielle
[Termes IGN] coordonnées sphériques
[Termes IGN] distorsion d'image
[Termes IGN] estimation de pose
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] géométrie épipolaire
[Termes IGN] image hémisphérique
[Termes IGN] Ransac (algorithme)Résumé : (auteur) Fisheye cameras are widely used in visual localization due to the advantage of the wide field of view. However, the severe distortion in fisheye images lead to feature matching difficulties. This paper proposes an IMU-assisted fisheye image matching method called spherically optimized random sample consensus (So-RANSAC). We converted the putative correspondences into fisheye spherical coordinates and then used an inertial measurement unit (IMU) to provide relative rotation angles to assist fisheye image epipolar constraints and improve the accuracy of pose estimation and mismatch removal. To verify the performance of So-RANSAC, experiments were performed on fisheye images of urban drainage pipes and public data sets. The experimental results showed that So-RANSAC can effectively improve the mismatch removal accuracy, and its performance was superior to the commonly used fisheye image matching methods in various experimental scenarios. Numéro de notice : A2021-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13102017 Date de publication en ligne : 20/05/2021 En ligne : https://doi.org/10.3390/rs13102017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97757
in Remote sensing > vol 13 n°10 (May-2 2021) . - n° 2017[article]The Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January-1 2021)
[article]
Titre : The Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos Type de document : Article/Communication Auteurs : Gonzalo Simarro, Auteur ; Daniel Calvete, Auteur ; Theocharis A. Plomaritis, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] aberration instrumentale
[Termes IGN] bathymétrie
[Termes IGN] distorsion d'image
[Termes IGN] eaux côtières
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] étalonnage en vol
[Termes IGN] image captée par drone
[Termes IGN] lentille
[Termes IGN] réalité de terrain
[Termes IGN] sondeur monofaisceauRésumé : (auteur) Measuring the nearshore bathymetry is critical in coastal management and morphodynamic studies. The recent advent of Unmanned Aerial Vehicles (UAVs), in combination with coastal video monitoring techniques, allows for an alternative and low cost evaluation of the nearshore bathymetry. Camera calibration and stabilization is a critical issue in bathymetry estimation from video systems. This work introduces a new methodology in order to obtain such bathymetries, and it compares the results to echo-sounder ground truth data. The goal is to gain a better understanding on the influence of the camera calibration and stabilization on the inferred bathymetry. The results show how the proposed methodology allows for accurate evaluations of the bathymetry, with overall root mean square errors in the order of 40 cm. It is shown that the intrinsic calibration of the camera, related to the lens distortion, is the most critical aspect. Here, the intrinsic calibration that was obtained directly during the flight yields the best results. Numéro de notice : A2021-076 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010150 Date de publication en ligne : 05/01/2021 En ligne : https://doi.org/10.3390/rs13010150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96814
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 150[article]Vers un protocole de calibration de caméras statiques à l'aide d'un drone / Jean-François Villeforceix (2021)
Titre : Vers un protocole de calibration de caméras statiques à l'aide d'un drone Type de document : Article/Communication Auteurs : Jean-François Villeforceix, Auteur ; Benjamin Bigot, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2021 Conférence : ORASIS 2021, 18e journées francophones des jeunes chercheurs en vision par ordinateur 13/09/2021 17/09/2021 Lac de Saint-Ferréol France programme Note générale : J.F. Villeforceix relève à la fois de l'IGN et du Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile. Langues : Français (fre) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] caméra numérique
[Termes IGN] chaîne de traitement
[Termes IGN] drone
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] point d'appui
[Termes IGN] positionnement statiqueRésumé : (auteur) Nous présentons un protocole de calibration d’une caméra statique. Ce type de caméra est singulier en photogrammétrie car l’utilisateur ne peut pas modifier son point de vue. Lorsque ce dernier n’est pas orienté vers des références connues, il devient alors impossible de calculer les paramètres de la caméra. Le BEA est amené à travailler sur des données issues de caméras statiques pour lesquelles il ne dispose que d’informations basiques (modèle, focale). La difficulté réside à la fois dans l’imprévisibilité des configurations rencontrées et les contraintes opérationnelles liées à l’enquête. Un protocole de calibration adapté à ces caméras spécifiques a été défini afin de répondre à ces 2 problématiques propres au BEA. Numéro de notice : C2021-071 Affiliation des auteurs : IGN+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://tel.archives-ouvertes.fr/IGN-ENSG/hal-03339675v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99544 Optimising drone flight planning for measuring horticultural tree crop structure / Yu-Hsuan Tu in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Optimising drone flight planning for measuring horticultural tree crop structure Type de document : Article/Communication Auteurs : Yu-Hsuan Tu, Auteur ; Stuart Phinn, Auteur ; Kasper Johansen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 83 - 96 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] correction d'image
[Termes IGN] détection d'arbres
[Termes IGN] distorsion d'image
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] horticulture
[Termes IGN] image captée par drone
[Termes IGN] MicMac
[Termes IGN] obturateur
[Termes IGN] photogrammétrie aérienne
[Termes IGN] plan de vol
[Termes IGN] point d'appui
[Termes IGN] qualité d'image
[Termes IGN] Queensland (Australie)
[Termes IGN] semis de pointsRésumé : (Auteur) In recent times, multi-spectral drone imagery has proved to be a useful tool for measuring tree crop canopy structure. In this context, establishing the most appropriate flight planning variable settings is an essential consideration due to their controls on the quality of the imagery and derived maps of tree and crop biophysical properties. During flight planning, variables including flight altitude, image overlap, flying direction, flying speed and solar elevation, require careful consideration in order to produce the most suitable drone imagery. Previous studies have assessed the influence of individual variables on image quality, but the interaction of multiple variables has yet to be examined. This study assesses the influence of several flight variables on measures of data quality in each processing step, i.e. photo alignment, point cloud densification, 3D model building, and ortho-mosaicking. The analysis produced a drone flight planning and image processing workflow that delivers accurate measurements of tree crops, including the tie point quality, densified point cloud density, and the measurement accuracy of height and plant projective cover derived from individual trees within a commercial avocado orchard. Results showed that flying along the hedgerow, at high solar elevation and with low image pitch angles improved the data quality. Optimal flying speed needs to be set to achieve the required forward overlap. The impacts of each image acquisition variable are discussed in detail and protocols for flight planning optimisation for three scenarios with different drone settings are suggested. Establishing protocols that deliver optimal image acquisitions for the collection of drone data over horticultural tree crops, will create greater confidence in the accuracy of subsequent algorithms and resultant maps of biophysical properties. Numéro de notice : A2020-044 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.006 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.006 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94524
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 83 - 96[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Camera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs / Grégoire Guillet in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Camera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs Type de document : Article/Communication Auteurs : Grégoire Guillet, Auteur ; Thomas Guillet, Auteur ; Ludovic Ravanel, Auteur Année de publication : 2020 Article en page(s) : pp 237 - 255 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ajustement de paramètres
[Termes IGN] appariement d'images
[Termes IGN] autocorrélation spatiale
[Termes IGN] distorsion d'image
[Termes IGN] estimation bayesienne
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] figuration de la densité
[Termes IGN] fonction inverse
[Termes IGN] image 2D
[Termes IGN] image aérienne
[Termes IGN] incertitude géométrique
[Termes IGN] longueur focale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle numérique de surface
[Termes IGN] orientation externe
[Termes IGN] photographie numérique
[Termes IGN] vue 3D
[Termes IGN] vue perspectiveRésumé : (Auteur) Large collections of images have become readily available through modern digital catalogs, from sources as diverse as historical photographs, aerial surveys, or user-contributed pictures. Exploiting the quantitative information present in such wide-ranging collections can greatly benefit studies that follow the evolution of landscape features over decades, such as measuring areas of glaciers to study their shrinking under climate change. However, many available images were taken with low-quality lenses and unknown camera parameters. Useful quantitative data may still be extracted, but it becomes important to both account for imperfect optics, and estimate the uncertainty of the derived quantities. In this paper, we present a method to address both these goals, and apply it to the estimation of the area of a landscape feature traced as a polygon on the image of interest. The technique is based on a Bayesian formulation of the camera calibration problem. First, the probability density function (PDF) of the unknown camera parameters is determined for the image, based on matches between 2D (image) and 3D (world) points together with any available prior information. In a second step, the posterior distribution of the feature area of interest is derived from the PDF of camera parameters. In this step, we also model systematic errors arising in the polygon tracing process, as well as uncertainties in the digital elevation model. The resulting area PDF therefore accounts for most sources of uncertainty. We present validation experiments, and show that the model produces accurate and consistent results. We also demonstrate that in some cases, accounting for optical lens distortions is crucial for accurate area determination with consumer-grade lenses. The technique can be applied to many other types of quantitative features to be extracted from photographs when careful error estimation is important. Numéro de notice : A2020-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.013 Date de publication en ligne : 02/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94404
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 237 - 255[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt On the adjustment, calibration and orientation of drone photogrammetry and laser-scanning / Emmanuel Clédat (2020)PermalinkRobust pose estimation and calibration of catadioptric cameras with spherical mirrors / Sagi Filin in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)PermalinkSimulation and analysis of photogrammetric UAV image blocks - Influence of camera calibration error / Yilin Zhou in Remote sensing, vol 12 n° 1 (January 2020)PermalinkSimulation and analysis of photogrammetric UAV image blocks: influence of camera calibration error / Yilin Zhou in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-2/W5 (May 2019)Permalink100% automatic metrology with UAV photogrammetry and embedded GPS, and its application in dike monitoring / Yilin Zhou (2019)PermalinkSecond iteration of photogrammetric processing to refine image orientation with improved tie-points / Truong Giang Nguyen in Sensors, vol 18 n° 7 (July 2018)PermalinkGeometric model and assessment of a dual‐fisheye imaging system / Mariana Batista Campos in Photogrammetric record, vol 33 n° 162 (June 2018)PermalinkModelling and automated calibration of a general multi‐projective camera / Ehsan Khoramshahi in Photogrammetric record, vol 33 n° 161 (March 2018)PermalinkSuivi et conservation du patrimoine historique et culturel / Jocelyn Le Maître (2018)PermalinkSensor modelling and camera calibration for close-range photogrammetry / Thomas Luhmann in ISPRS Journal of photogrammetry and remote sensing, vol 115 (May 2016)Permalink