Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Amérique (géographie politique) > Etats-Unis > Minnesota (Etats-Unis)
Minnesota (Etats-Unis) |
Documents disponibles dans cette catégorie (14)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 / Mbongowo J. Mbuh in Geocarto international, vol 36 n° 14 ([01/08/2021])
[article]
Titre : Spatiotemporal analysis of urban heat island intensification in the city of Minneapolis-St. Paul and Chicago metropolitan areas using Landsat data from 1984 to 2016 Type de document : Article/Communication Auteurs : Mbongowo J. Mbuh, Auteur ; Ryan Wheeler, Auteur ; Amanda Cook, Auteur Année de publication : 2021 Article en page(s) : pp 1565 - 1590 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chicago (Illinois)
[Termes IGN] données spatiotemporelles
[Termes IGN] emissivité
[Termes IGN] exitance spectrale
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image thermique
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelle
[Termes IGN] température au solRésumé : (auteur) Most major cities worldwide are affected Urban Heat Islands – a condition of relatively higher temperatures being observed in one area compared to another that can be caused by a decrease in greenspace. One of the major reasons attributed to this increase in the warming of urban landscapes is the decrease in green space. This concept has received a lot of attention due to the destruction of vegetation for urban development and has prompted long-term spatial-temporal studies of Urban Heat Islands to understanding local climates. The objective of this study is to use Landsat data to examine the temporal intensification of UHIs and their variability from 1984–2016 for the cities of Chicago and Minneapolis-St. Paul. Landsat L4-5 TM), L7 ETM+), OLI and TIRS from 1984 to 2016 was used to examine land surface temperature (LST). Firstly, we converted the digital number (DN) to spectral radiance (L) and to temperature in Kelvin and from kelvin to Celsius and a conversion from Radiance to Top of the Atmosphere Reflectance and estimation of land surface emissivity. Finally, LST was estimated and Urban Heat Island retrieval and anomalies computed to help examine inconsistencies in our data. Our analysis showed year-to-year fluctuations in surface temperature, intensification of UHIs for both metro areas. Using a defined deductive index to identify environmentally critical areas, estimates of UHIs based on LST showed that both metropolitan areas are UHIs with LST > µ + 0.5 × δ. Higher intensification values were observed in 1988 and 2010 for Chicago and 1984, 1999 and 2016 for Minneapolis-St. Paul from analysis. While both areas have the similar climatic conditions, our analysis show differences in UHIs intensification as observed in their urban growth patterns. Chicago experiences a higher UHI intensity compared to Minneapolis-St. Paul and this could be explained by higher number of tall buildings than Minneapolis-St. Paul. Numéro de notice : A2021-556 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1655802 Date de publication en ligne : 29/08/2019 En ligne : https://doi.org/10.1080/10106049.2019.1655802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98109
in Geocarto international > vol 36 n° 14 [01/08/2021] . - pp 1565 - 1590[article]How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auscultation topographique
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-OLI
[Termes IGN] inventaire forestier local
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle d'erreur
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4551 - 4569[article]Harmonic regression of Landsat time series for modeling attributes from national forest inventory data / Barry T. Wilson in ISPRS Journal of photogrammetry and remote sensing, vol 137 (March 2018)
[article]
Titre : Harmonic regression of Landsat time series for modeling attributes from national forest inventory data Type de document : Article/Communication Auteurs : Barry T. Wilson, Auteur ; Joseph F. Knight, Auteur ; Ronald E. McRoberts, Auteur Année de publication : 2018 Article en page(s) : pp 29 - 46 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attribut
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] régression harmonique
[Termes IGN] série temporelleRésumé : (Auteur) Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009–2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10–20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher. Numéro de notice : A2018-077 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89439
in ISPRS Journal of photogrammetry and remote sensing > vol 137 (March 2018) . - pp 29 - 46[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018033 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018032 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass / Ronald E. McRoberts in Annals of Forest Science, vol 73 n° 4 (December 2016)
[article]
Titre : The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass Type de document : Article/Communication Auteurs : Ronald E. McRoberts, Auteur ; Erik Naesset, Auteur ; Terje Gobakken, Auteur Année de publication : 2016 Article en page(s) : pp 839 - 847 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse diachronique
[Termes IGN] biomasse
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation statistique
[Termes IGN] forêt
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] Norvège
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Key message : When areas of interest experience little change, remote sensing-based maps whose dates deviate from ground data can still substantially enhance precision. However, when change is substantial, deviations in dates reduce the utility of such maps for this purpose.
Context : Remote sensing-based maps are well-established as means of increasing the precision of estimates of forest inventory parameters. The general practice is to use maps whose dates correspond closely to the dates of ground data. However, as national forest inventories move to continuous inventories, deviations between map and ground data dates increase.
Aims : The aim was to assess the degree to which remote sensing-based maps can be used to increase the precision of estimates despite differences between map and ground data dates.
Methods : For study areas in the USA and Norway, maps were constructed for each of two dates, and model-assisted regression estimators were used to estimate inventory parameters using ground data whose dates differed by as much as 11 years from the map dates.
Results : For the Minnesota study area that had little change, 7-year differences in dates had little effect on the precision of estimates of proportion forest area. For the Norwegian study area that experienced considerable change, 11-year differences in dates had a detrimental effect on the precision of estimates of mean biomass per unit area.
Conclusions : The effects of differences in map and ground data dates were less important than temporal change in the study area.Numéro de notice : A2016--168 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s13595-015-0485-6 Date de publication en ligne : 12/05/2015 En ligne : https://doi.org/10.1007/s13595-015-0485-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87210
in Annals of Forest Science > vol 73 n° 4 (December 2016) . - pp 839 - 847[article]Wetland mapping in the upper midwest United States: An object-based approach integrating Lidar and imagery radar / Lian P. Rampi in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 5 (May 2014)
[article]
Titre : Wetland mapping in the upper midwest United States: An object-based approach integrating Lidar and imagery radar Type de document : Article/Communication Auteurs : Lian P. Rampi, Auteur ; Joseph F. Knight, Auteur ; Keith C. Pelletier, Auteur Année de publication : 2014 Article en page(s) : pp 439 - 449 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification orientée objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multibande
[Termes IGN] image radar
[Termes IGN] marais
[Termes IGN] Minnesota (Etats-Unis)Résumé : (Auteur) This study investigated the effectiveness of using high resolution data to map wetlands in three ecoregions in Minnesota. High resolution data included multispectral leaf-off aerial imagery and lidar elevation data. These data were integrated using an Object-Based Image Analysis (OBIA) approach. Results for each study area were compared against field and image interpreted reference data using error matrices, accuracy estimates, and the kappa statistic. Producer's and user's accuracies were in the range of 92 to 96 percent and 91 to 96 percent, respectively, and overall accuracies ranged from 96-98 percent for wetlands larger than 0.20 ha (0.5 acres). The results of this study may allow for increased accuracy of mapping wetlands efforts over traditional remote sensing methods. Numéro de notice : A2014-243 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.80.5.439 En ligne : https://doi.org/10.14358/PERS.80.5.439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33146
in Photogrammetric Engineering & Remote Sensing, PERS > vol 80 n° 5 (May 2014) . - pp 439 - 449[article]PermalinkSemi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes / Marcus W. Beck in ISPRS Journal of photogrammetry and remote sensing, vol 81 (July 2013)PermalinkMining boundary effects in areally referenced spatial data using the Bayesian information criterion / Sudipto Banerjee in Geoinformatica, vol 15 n° 3 (July 2011)PermalinkUrban growth monitoring using remote sensing and geographic information system: a case study in the Twin Cities metropolitain area, Minnesota / F. Yuan in Geocarto international, vol 25 n° 3 (June 2010)PermalinkLand-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modelling / F. Yuan in International Journal of Remote Sensing IJRS, vol 29 n°3-4 (February 2008)PermalinkGeographic information systems as media and society : does GIS wear a white and black Stetson? / W.W. Crumplin in Cartographica, vol 42 n° 1 (March 2007)PermalinkCalibrating a neural network-based urban change model for two metropolitan areas of the upper Midwest of the United States / B.C. Pijanowski in International journal of geographical information science IJGIS, vol 19 n° 2 (february 2005)PermalinkDelineation of forest/nonforest land use classes using nearest neighbor methods / R. Haapanen in Remote sensing of environment, vol 89 n° 3 (15/02/2004)PermalinkSelecting the spatial resolution of satellite sensors required for global monitoring of land transformations / J.R.G. Townshend in International Journal of Remote Sensing IJRS, vol 9 n° 2 (February 1988)Permalink