Descripteur
Termes IGN > informatique > intelligence artificielle > ingénierie des connaissances > découverte de connaissances > exploration de données > règle d'association
règle d'association |
Documents disponibles dans cette catégorie (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A prediction model for surface deformation caused by underground mining based on spatio-temporal associations / Min Ren in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : A prediction model for surface deformation caused by underground mining based on spatio-temporal associations Type de document : Article/Communication Auteurs : Min Ren, Auteur ; Guanwen Cheng, Auteur ; Wancheng Zhu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 94 - 122 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse des risques
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation de la croute terrestre
[Termes IGN] déformation de surface
[Termes IGN] mine de fer
[Termes IGN] modèle de simulation
[Termes IGN] règle d'associationMots-clés libres : spatio-temporal association rule mining (STARM) Résumé : (auteur) Accurate predictions of the surface deformation caused by underground mining are crucial for the safe development of underground resources. Although surface deformation has been predicted by artificial intelligence (AI) methods, most AI models are established based on the relationships between surface deformation and influential factors. The lack of consideration of the deformation state transition often leads to errors in the prediction results of catastrophic deformation by conventional AI methods. In this respect, this study introduces a surface deformation prediction model based on spatio-temporal association rule mining (STARM). Surface deformation is classified as excessive deformation zone (EDZ) and hysteretic deformation zone (HDZ), representing different surface deformation stage or state. The spatio-temporal association rules between the monitored EDZ and HDZ data are then mined. A surface deformation prediction model is established according to the spatio-temporal relationship between monitored EDZ and HDZ data. The proposed model is verified based on a practical case study of the Chengchao Iron Mine in China. The data collection of the influential factors is not requisite for the proposed model. It can achieve accurate prediction of the catastrophic deformation that was characterized by deformation state transition. Numéro de notice : A2022-035 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2021.2015460 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2015460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99359
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 94 - 122[article]Rule-guided human classification of Volunteered Geographic Information / Ahmed Loai Ali in ISPRS Journal of photogrammetry and remote sensing, vol 127 (May 2017)
[article]
Titre : Rule-guided human classification of Volunteered Geographic Information Type de document : Article/Communication Auteurs : Ahmed Loai Ali, Auteur ; Zoe Falomir, Auteur ; Falko Schmid, Auteur ; Christian Freksa, Auteur Année de publication : 2017 Article en page(s) : pp 3 – 15 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification
[Termes IGN] données descriptives
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multisources
[Termes IGN] exploration de données
[Termes IGN] imprécision des données
[Termes IGN] production participative
[Termes IGN] règle d'association
[Termes IGN] relation topologiqueRésumé : (auteur) During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants’ local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach. Numéro de notice : A2017-218 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.06.003 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85093
in ISPRS Journal of photogrammetry and remote sensing > vol 127 (May 2017) . - pp 3 – 15[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017053 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017052 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Geographic ontologies, gazetteers and multilingualism / Robert Laurini in Future internet, vol 7 n° 1 (March 2015)
[article]
Titre : Geographic ontologies, gazetteers and multilingualism Type de document : Article/Communication Auteurs : Robert Laurini, Auteur Année de publication : 2015 Article en page(s) : pp 1 - 23 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] langue
[Termes IGN] objet géographique
[Termes IGN] ontologie
[Termes IGN] raisonnement spatial
[Termes IGN] recherche d'information géographique
[Termes IGN] règle d'association
[Termes IGN] répertoire toponymiqueMots-clés libres : geographic information science geographic knowledge geographic ontologies typonyms gazetteers multilingualism geographic ontology matching geographic reasoning Résumé : (auteur) Different languages imply different visions of space, so that terminologies are different in geographic ontologies. In addition to their geometric shapes, geographic features have names, sometimes different in diverse languages. In addition, the role of gazetteers, as dictionaries of place names (toponyms), is to maintain relations between place names and location. The scope of geographic information retrieval is to search for geographic information not against a database, but against the whole Internet: but the Internet stores information in different languages, and it is of paramount importance not to remain stuck to a unique language. In this paper, our first step is to clarify the links between geographic objects as computer representations of geographic features, ontologies and gazetteers designed in various languages. Then, we propose some inference rules for matching not only types, but also relations in geographic ontologies with the assistance of gazetteers. Numéro de notice : A2015-191 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.3390/fi7010001 En ligne : https://doi.org/10.3390/fi7010001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75970
in Future internet > vol 7 n° 1 (March 2015) . - pp 1 - 23[article]A framework for regional association rule mining and scoping in spatial datasets / W. Ding in Geoinformatica, vol 15 n° 1 (January 2011)
[article]
Titre : A framework for regional association rule mining and scoping in spatial datasets Type de document : Article/Communication Auteurs : W. Ding, Auteur ; C. Eick, Auteur ; X. Yuan, Auteur ; Jing Wang, Auteur ; J.P. Nicot, Auteur Année de publication : 2011 Article en page(s) : pp 1 - 28 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] découverte de connaissances
[Termes IGN] exploration de données géographiques
[Termes IGN] règle d'associationRésumé : (Auteur) The motivation for regional association rule mining and scoping is driven by the facts that global statistics seldom provide useful insight and that most relationships in spatial datasets are geographically regional, rather than global. Furthermore, when using traditional association rule mining, regional patterns frequently fail to be discovered due to insufficient global confidence and/or support. In this paper, we systematically study this problem and address the unique challenges of regional association mining and scoping: (1) region discovery: how to identify interesting regions from which novel and useful regional association rules can be extracted; (2) regional association rule scoping: how to determine the scope of regional association rules. We investigate the duality between regional association rules and regions where the associations are valid: interesting regions are identified to seek novel regional patterns, and a regional pattern has a scope of a set of regions in which the pattern is valid. In particular, we present a reward-based region discovery framework that employs a divisive grid-based supervised clustering for region discovery. We evaluate our approach in a real-world case study to identify spatial risk patterns from arsenic in the Texas water supply. Our experimental results confirm and validate research results in the study of arsenic contamination, and our work leads to the discovery of novel findings to be further explored by domain scientists. Numéro de notice : A2011-026 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-010-0111-6 Date de publication en ligne : 18/06/2010 En ligne : https://doi.org/10.1007/s10707-010-0111-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30807
in Geoinformatica > vol 15 n° 1 (January 2011) . - pp 1 - 28[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 057-2011011 RAB Revue Centre de documentation En réserve L003 Disponible Reducing uninteresting spatial association rules in geographic databases using background knowledge: a summary of results / Vania Bogorny in International journal of geographical information science IJGIS, vol 22 n° 4-5 (april 2008)
[article]
Titre : Reducing uninteresting spatial association rules in geographic databases using background knowledge: a summary of results Type de document : Article/Communication Auteurs : Vania Bogorny, Auteur ; Bart Kuijpers, Auteur ; L. Alvares, Auteur Année de publication : 2008 Article en page(s) : pp 361 - 386 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données localisées
[Termes IGN] découverte de connaissances
[Termes IGN] exploration de données géographiques
[Termes IGN] règle d'associationRésumé : (Auteur) Many association rule-mining algorithms have been proposed in the last few years. Their main drawback is the huge amount of generated patterns. In spatial association rule mining, besides the large amount of rules, many are well-known geographic domain associations explicitly represented in geographic database schemas. Existing algorithms have only considered the data, while the schema has not been considered. The result is that also the associations explicitly represented in geographic database schemas are extracted by association rule-mining algorithms. With the aim to reduce the number of well-known patterns and association rules, this paper presents a summary of results of a novel approach to extract patterns from geographic databases. A two step-pruning method is presented to avoid the generation of association rules that are previously known to be uninteresting. Experiments with real geographic databases show a considerable time reduction in both geographic data pre-processing and spatial association rule mining, with a very significant reduction in the total number of rules. Copyright Taylor & Francis Numéro de notice : A2008-144 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1080/13658810701412991 En ligne : https://doi.org/10.1080/13658810701412991 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=29139
in International journal of geographical information science IJGIS > vol 22 n° 4-5 (april 2008) . - pp 361 - 386[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-08031 RAB Revue Centre de documentation En réserve L003 Disponible 079-08032 RAB Revue Centre de documentation En réserve L003 Disponible