Descripteur
Termes IGN > mathématiques > géométrie > figure géométrique > ligne (géométrie)
ligne (géométrie) |
Documents disponibles dans cette catégorie (225)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A minimal solution for image-based sphere estimation / Tekla Tóth in International journal of computer vision, vol 131 n° 6 (June 2023)
[article]
Titre : A minimal solution for image-based sphere estimation Type de document : Article/Communication Auteurs : Tekla Tóth, Auteur ; Levente Hajder, Auteur Année de publication : 2023 Article en page(s) : pp 1428 - 1447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] cône
[Termes IGN] ellipse
[Termes IGN] Matlab
[Termes IGN] reconstruction d'image
[Termes IGN] représentation géométrique
[Termes IGN] sphère
[Termes IGN] sphère paramétriqueRésumé : (auteur) We propose a novel minimal solver for sphere fitting via its 2D central projection, i.e., a special ellipse. The input of the presented algorithm consists of contour points detected in a camera image. General ellipse fitting problems require five contour points. However, taking advantage of the isotropic spherical target, three points are enough to define the tangent cone parameters of the sphere. This yields the sought ellipse parameters. Similarly, the sphere center can be estimated from the cone if the radius is known. These proposed geometric methods are rapid, numerically stable, and easy to implement. Experimental results—on synthetic, photorealistic, and real images—showcase the superiority of the proposed solutions to the state-of-the-art methods. A real-world LiDAR-camera calibration application justifies the utility of the sphere-based approach resulting in an error below a few centimeters. Numéro de notice : A2023-189 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-023-01766-1 Date de publication en ligne : 02/03/2023 En ligne : https://doi.org/10.1007/s11263-023-01766-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103061
in International journal of computer vision > vol 131 n° 6 (June 2023) . - pp 1428 - 1447[article]Automatic generation of outline-based representations of landmark buildings with distinctive shapes / Peng Ti in International journal of geographical information science IJGIS, vol 37 n° 4 (April 2023)
[article]
Titre : Automatic generation of outline-based representations of landmark buildings with distinctive shapes Type de document : Article/Communication Auteurs : Peng Ti, Auteur ; Tao Xiong, Auteur ; Yuhong Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 864 - 884 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bâti-3D
[Termes IGN] cartographie
[Termes IGN] contour
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] raisonnement spatial
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'image
[Termes IGN] sémiologie graphique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Landmark buildings are salient features for spatial cognition on maps. Distinctive outlines are the major visual characteristics that separate landmark buildings from their surrounding environments. The automatic symbolization of landmark outlines facilitates recognition and map production. As users often recognize landmarks by the outlines of their façades from a street view, this study proposes an automatic method for automatically generating representations of the outlines of landmark buildings in four steps: (1) extract outlines from street-view photographs using GrabCut method, (2) vectorize the extracted building outlines, (3) simplify outline shapes, and (4) symbolize the simplified building outlines in three dimensions (3D). We used the proposed method to generate test data with symbolized outlines for eight buildings in a real-world environment for a wayfinding experiment in which the subjects used the building representations to identify landmark buildings and evaluated their perception of the generated maps. The subjects successfully recognized these buildings based on the symbolized outlines on a map, expressed satisfaction with the manually generated 3D symbols, and reported the same or similar ease of building recognition using 2D or 3D symbolized outlines. Numéro de notice : A2023-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2143503 Date de publication en ligne : 11/11/2022 En ligne : https://doi.org/10.1080/13658816.2022.2143503 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103109
in International journal of geographical information science IJGIS > vol 37 n° 4 (April 2023) . - pp 864 - 884[article]PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach / Bowen Niu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach Type de document : Article/Communication Auteurs : Bowen Niu, Auteur ; Quanlong Feng, Auteur ; Jianyu Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2164361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] déchet
[Termes IGN] fusion de données
[Termes IGN] image à très haute résolution
[Termes IGN] Inde
[Termes IGN] Mexique
[Termes IGN] urbanisationRésumé : (auteur) The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification. Numéro de notice : A2023-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2164361 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2164361 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102407
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2164361[article]Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments Type de document : Article/Communication Auteurs : Sercan Gülci, Auteur ; Afiz Hulusi Acar, Auteur ; Abdullah E. Akay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 560 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] attribut géomètrique
[Termes IGN] coefficient de corrélation
[Termes IGN] courbe
[Termes IGN] matrice de confusion
[Termes IGN] montagne
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] tracé routier
[Termes IGN] Turquie
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Road curve attributes can be determined by using Geographic Information System (GIS) to be used in road vehicle traffic safety and planning studies. This study involves analyzing the GIS-based estimation accuracy in the length, radius and the number of small horizontal road curves on a two-lane rural road and a forest road. The prediction success of horizontal curve attributes was investigated using digitized raw and generalized/simplified road segments. Two different roads were examined, involving 20 test groups and two control groups, using 22 datasets obtained from digitized and surveyed roads based on satellite imagery, GIS estimates, and field measurements. Confusion matrix tables were also used to evaluate the prediction accuracy of horizontal curve geometry. F-score, Mathews Correlation Coefficient, Bookmaker Informedness and Balanced Accuracy were used to investigate the performance of test groups. The Kruskal–Wallis test was used to analyze the statistical relationships between the data. Compared to the Bezier generalization algorithm, the Douglas–Peucker algorithm showed the most accurate horizontal curve predictions at generalization tolerances of 0.8 m and 1 m. The results show that the generalization tolerance level contributes to the prediction accuracy of the number, curve radius, and length of the horizontal curves, which vary with the tolerance value. Thus, this study underlined the importance of calculating generalizations and tolerances following a manual road digitization. Numéro de notice : A2022-847 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110560 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.3390/ijgi11110560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102083
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 560[article]Improving image segmentation with boundary patch refinement / Xiaolin Hu in International journal of computer vision, vol 130 n° 11 (November 2022)PermalinkThe iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)Permalink3D modeling method for dome structure using digital geological map and DEM / Xian-Yu Liu in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)PermalinkLine-based deep learning method for tree branch detection from digital images / Rodrigo L. S. Silva in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)Permalink3D building model simplification method considering both model mesh and building structure / Jiangfeng She in Transactions in GIS, vol 26 n° 3 (May 2022)PermalinkA cost-effective method for reconstructing city-building 3D models from sparse Lidar point clouds / Marek Kulawiak in Remote sensing, vol 14 n° 5 (March-1 2022)PermalinkPermalinkPermalinkComparative analysis for methods of building digital elevation models from topographic maps using geoinformation technologies / Vadim Belenok in Geodesy and cartography, vol 47 n° 4 (December 2021)PermalinkA method of extracting high-accuracy elevation control points from ICESat-2 altimetry data / Binbin Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)Permalink