Descripteur
Termes IGN > sciences naturelles > physique > traitement du signal > prétraitement du signal > filtrage du bruit > filtre de déchatoiement
filtre de déchatoiement |
Documents disponibles dans cette catégorie (69)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) / Anchal Kumawat in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL) Type de document : Article/Communication Auteurs : Anchal Kumawat, Auteur ; Sucheta Panda, Auteur Année de publication : 2022 Article en page(s) : pp 3681 - 3702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation d'image
[Termes IGN] base de données d'images
[Termes IGN] détection de contours
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Wiener
[Termes IGN] Inférence floue
[Termes IGN] logique floue
[Termes IGN] méthode robuste
[Termes IGN] restauration d'image
[Termes IGN] seuillage
[Termes IGN] superposition d'imagesRésumé : (auteur) The problem of edge detection plays a crucial role in almost all research areas of image processing. If edges are detected accurately, one can detect the location of objects and the parameters such as shape and area can be measured more precisely. In order to overcome the above problem, a feature-based image registration (FBIR) method in combination with an improved version of canny with fuzzy logic is proposed for accurate detection of edges. The major contributions of the present work are summarized in three steps. In the first step, a restoration-based enhancement algorithm is proposed to get a fine image from a distorted noisy image. In the second step, two versions of input images are registered using a modified FBIR approach. In the third step, to overcome the drawback of canny edge detection algorithm, each step of the algorithm is modified. The output is then fed to a “fuzzy inference system”. The “fuzzy rule-based technique”, when applied to the problem of “edge detection”, is very “efficient” because the thickness of the edges can be controlled by simply changing “rules and output parameters”. The domain of the images under consideration is various well-known image databases such as Berkeley and USC-SIPI databases, whereas the proposed method is also suitable for other types of both indoor and outdoor images. The robustness of the proposed method is analysed, compared and evaluated with seven image assessment quality (IAQ) parameters. The performance of the proposed method is compared with some of the state-of-the-art edge detection methods in terms of the seven IAQ parameters. Numéro de notice : A2022-839 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02196-1 Date de publication en ligne : 14/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02196-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102041
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp 3681 - 3702[article]Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lin Zhou in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lin Zhou, Auteur ; Zhenfeng Shao, Auteur ; Shugen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 383 - 398 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] carte climatique
[Termes IGN] Chine
[Termes IGN] filtre de déchatoiement
[Termes IGN] ilot thermique urbain
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] température de l'airRésumé : (auteur) As a newly developed classification system, the LCZ scheme provides a research framework for Urban Heat Island (UHI) studies and standardizes the worldwide urban temperature observations. With the growing popularity of deep learning, deep learning-based approaches have shown great potential in LCZ mapping. Three major cities in China are selected as the study areas. In this study, we design a deep convolutional neural network architecture, named Residual combined Squeeze-and-Excitation and Non-local Network (RSNNet), that consists of the Squeeze-and-Excitation (SE) block and non-local block to classify LCZ using freely available Sentinel-1 SAR and Sentinel-2 multispectral imagery. Overall Accuracy (OA) of 0.9202, 0.9524 and 0.9004 for three selected cities are obtained by applying RSNNet and training data of individual city, and OA of 0.9328 is obtained by training RSNNet with data from all three cities. RSNNet outperforms other popular Convolutional Neural Networks (CNNs) in terms of LCZ mapping accuracy. We further design a series of experiments to investigate the effect of different characteristics of Sentinel-1 SAR data on the performance of RSNNet in LCZ mapping. The results suggest that the combination of SAR and multispectral data can improve the accuracy of LCZ classification. The proposed RSNNet achieves an OA of 0.9425 when integrating the three decomposed components with Sentinel-2 multispectral images, 2.44% higher than using Sentinel-2 images alone. Numéro de notice : A2022-723 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2030654 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2030654 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101666
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 383 - 398[article]Multi-objective CNN-based algorithm for SAR despeckling / Sergio Vitale in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
[article]
Titre : Multi-objective CNN-based algorithm for SAR despeckling Type de document : Article/Communication Auteurs : Sergio Vitale, Auteur ; Giampaolo Ferraioli, Auteur ; Vito Pascazio, Auteur Année de publication : 2021 Article en page(s) : pp 9336 - 9349 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] chatoiement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] restauration d'imageRésumé : (auteur) Deep learning (DL) in remote sensing has nowadays become an effective operative tool: it is largely used in applications, such as change detection, image restoration, segmentation, detection, and classification. With reference to the synthetic aperture radar (SAR) domain, the application of DL techniques is not straightforward due to the nontrivial interpretation of SAR images, especially caused by the presence of speckle. Several DL solutions for SAR despeckling have been proposed in the last few years. Most of these solutions focus on the definition of different network architectures with similar cost functions, not involving SAR image properties. In this article, a convolutional neural network (CNN) with a multi-objective cost function taking care of spatial and statistical properties of the SAR image is proposed. This is achieved by the definition of a peculiar loss function obtained by the weighted combination of three different terms. Each of these terms is dedicated mainly to one of the following SAR image characteristics: spatial details, speckle statistical properties, and strong scatterers identification. Their combination allows balancing these effects. Moreover, a specifically designed architecture is proposed to effectively extract distinctive features within the considered framework. Experiments on simulated and real SAR images show the accuracy of the proposed method compared with the state-of-art despeckling algorithms, both from a quantitative and qualitative point of view. The importance of considering such SAR properties in the cost function is crucial for correct noise rejection and details preservation in different underlined scenarios, such as homogeneous, heterogeneous, and extremely heterogeneous. Numéro de notice : A2021-810 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3034852 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3034852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98874
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9336 - 9349[article]SAR speckle removal using hybrid frequency modulations / Shuaiqi Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 5 (May 2021)
[article]
Titre : SAR speckle removal using hybrid frequency modulations Type de document : Article/Communication Auteurs : Shuaiqi Liu, Auteur ; Lele Gao, Auteur ; Yu Lei, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 3956 - 3966 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] artefact
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] modulation de fréquenceRésumé : (auteur) Synthetic aperture radar (SAR) images often interfere with speckle artifacts that have a great impact on subsequent processing and analysis operations. To remove speckle artifacts, this article introduces a hybrid denoising approach by using a convolutional neural network (CNN) and consistent cycle spinning (CCS) in the nonsubsample shearlet transform (NSST) domain. First, we apply NSST to a noisy SAR image to gain low- and high-frequency coefficients. Second, we adopt a learned deep CNN model to eliminate the speckle noise in the low-frequency coefficients, which retains more contour information. Third, we employ CCS to enhance the high-frequency coefficients, which preserves more details of the original SAR image. Finally, we obtain the denoised image by using inverse NSST applied to the denoised coefficients. Compared with state-of-the-art algorithms, the results of the experiment indicate that our method not only achieves better speckle removal performance but also maintains more detailed information retention. Numéro de notice : A2021-397 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3014130 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3014130 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97688
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 5 (May 2021) . - pp 3956 - 3966[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] échantillonnage
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] ondelette
[Termes IGN] regroupement de données
[Termes IGN] superpixelRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 79 - 94[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Suivi de la déforestation à partir de données Sentinel-1 en contexte tropical / Lucile Auzeméry (2021)PermalinkMapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)PermalinkSaliency-guided deep neural networks for SAR image change detection / Jie Geng in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)PermalinkCoastline extraction from SAR images using robust ridge tracing / Dailiang Wang in Marine geodesy, vol 42 n° 3 (May 2019)PermalinkMultitemporal SAR images denoising and change detection : applications to Sentinel-1 data / Weiying Zhao (2019)PermalinkApplication of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran / Morteza Safari in Geocarto international, vol 33 n° 11 (November 2018)PermalinkUtilisation de QGIS en télédétection, ch. 6. Cartographie de la végétation à partir d'images radar Sentinel-1 / Pierre-Louis Frison (2018)PermalinkSpace-wise approach for airborne gravity data modelling / Daniele Sampietro in Journal of geodesy, vol 91 n° 5 (May 2017)PermalinkDeep supervised and contractive neural network for SAR image classification / Jie Geng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)PermalinkPolarimetric SAR speckle filtering and the extended sigma filter / Jong-Sen Lee in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)Permalink