Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image Formosat/COSMIC
image Formosat/COSMIC |
Documents disponibles dans cette catégorie (11)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde / Li Wang in Space weather, vol 19 n° 3 (March 2021)
[article]
Titre : Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde Type de document : Article/Communication Auteurs : Li Wang, Auteur ; Zhao Dongsheng ; Changyong He , Auteur ; et al., Auteur Année de publication : 2021 Projets : 3-projet - voir note / Article en page(s) : n° e2020SW002605 Note générale : bibliographie
The authors greatly appreciate the financial support from the National Natural Science Foundations of China (Grant No. 41730109, 41804013), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200646, BK20200664), the Fundamental Re-search Funds for the Central Universi-ties (Grant No. 2020QN31, 2020QN30), the Project funded by China Postdoc-toral Science Foundation (Grant No. 2020M671645), the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEP-A06), A Project Funded by the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions (Surveying and Mapping).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électrons
[Termes IGN] variation saisonnièreRésumé : (auteur) The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal-vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space-borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY-3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three-dimensional electron density model based on an artificial neural network, namely ANN-TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root-mean-square error of the predicted residuals is 7.8 × 104 el/cm3. Under quiet space weather, the predicted accuracy of the ANN-TDD is 30%–60% higher than the IRI-2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN-TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI-2016 with the STORM option activated. Additionally, the ANN-TDD successfully reproduces the large-scale horizontal-vertical ionospheric electrodynamic features, including seasonal variation and hemispheric asymmetries. These features agree well with the structure revealed by the RO profiles derived from the FORMOSAT/COSMIC-2 mission. Furthermore, the ANN-TDD successfully captures the prominent regional ionospheric patterns, including the equatorial ionization anomaly, Weddell Sea anomaly and mid-latitude summer nighttime anomaly. The new model is expected to play an important role in the application of GNSS navigation and in the explanation of the physical mechanisms involved. Numéro de notice : A2021-504 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2020SW002605 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1029/2020SW002605 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99369
in Space weather > vol 19 n° 3 (March 2021) . - n° e2020SW002605[article]A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network / Wang Li in Advances in space research, vol 67 n° 1 (January 2021)
[article]
Titre : A new method for improving the performance of an ionospheric model developed by multi-instrument measurements based on artificial neural network Type de document : Article/Communication Auteurs : Wang Li, Auteur ; Changyong He , Auteur ; Andong Hu, Auteur ; Dongsheng Zhao, Auteur ; Yi Shen, Auteur ; Kefei Zhang, Auteur Année de publication : 2021 Article en page(s) : pp 20 - 34 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] correction ionosphérique
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électronsRésumé : (auteur) There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations. Numéro de notice : A2021-986 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2020.07.032 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.asr.2020.07.032 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102912
in Advances in space research > vol 67 n° 1 (January 2021) . - pp 20 - 34[article]Advanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations / Wang Li in Remote sensing, vol 12 n° 5 (March 2020)
[article]
Titre : Advanced machine learning optimized by the genetic algorithm in ionospheric models using long-term multi-instrument observations Type de document : Article/Communication Auteurs : Wang Li, Auteur ; Dongsheng Zhao, Auteur ; Changyong He , Auteur ; Andong Hu, Auteur ; Kefei Zhang, Auteur Année de publication : 2020 Projets : 3-projet - voir note / Article en page(s) : n° 866 Note générale : bibliographie
This research was funded by the National Natural Science Foundations of China, grant number 41730109, the Priority Academic Program Development of Jiangsu Higher Education Institutions (Surveying and Mapping) and the Jiangsu Dual Creative Talents and Jiangsu Dual Creative Teams Programme Projects awarded in 2017.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] algorithme génétique
[Termes IGN] image Formosat/COSMIC
[Termes IGN] International Reference Ionosphere
[Termes IGN] modèle ionosphérique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électronsRésumé : (auteur) The ionospheric delay is of paramount importance to radio communication, satellite navigation and positioning. It is necessary to predict high-accuracy ionospheric peak parameters for single frequency receivers. In this study, the state-of-the-art artificial neural network (ANN) technique optimized by the genetic algorithm is used to develop global ionospheric models for predicting foF2 and hmF2. The models are based on long-term multiple measurements including ionospheric peak frequency model (GIPFM) and global ionospheric peak height model (GIPHM). Predictions of the GIPFM and GIPHM are compared with the International Reference Ionosphere (IRI) model in 2009 and 2013 respectively. This comparison shows that the root-mean-square errors (RMSEs) of GIPFM are 0.82 MHz and 0.71 MHz in 2013 and 2009, respectively. This result is about 20%–35% lower than that of IRI. Additionally, the corresponding hmF2 median errors of GIPHM are 20% to 30% smaller than that of IRI. Furthermore, the ANN models present a good capability to capture the global or regional ionospheric spatial-temporal characteristics, e.g., the equatorial ionization anomaly and Weddell Sea anomaly. The study shows that the ANN-based model has a better agreement to reference value than the IRI model, not only along the Greenwich meridian, but also on a global scale. The approach proposed in this study has the potential to be a new three-dimensional electron density model combined with the inclusion of the upcoming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) data. Numéro de notice : A2020-872 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12050866 Date de publication en ligne : 07/03/2020 En ligne : https://doi.org/10.3390/rs12050866 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99659
in Remote sensing > vol 12 n° 5 (March 2020) . - n° 866[article]Cartographie des essences forestières à partir de séries temporelles d’images satellitaires à hautes résolutions : stabilité des prédictions, autocorrélation spatiale et cohérence avec la phénologie observée in situ / Nicolas Karasiak (2020)
Titre : Cartographie des essences forestières à partir de séries temporelles d’images satellitaires à hautes résolutions : stabilité des prédictions, autocorrélation spatiale et cohérence avec la phénologie observée in situ Type de document : Thèse/HDR Auteurs : Nicolas Karasiak, Auteur ; Claude Monteil, Directeur de thèse ; Jean-Français Dejoux, Directeur de thèse ; David Sheeren , Directeur de thèse Editeur : Toulouse : Université de Toulouse Année de publication : 2020 Importance : 240 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse, délivré par l'Institut National Polytechnique de Toulouse, spécialité : Agrosystèmes, Écosystèmes et EnvironnementLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] autocorrélation spatiale
[Termes IGN] bibliothèque logicielle
[Termes IGN] carte forestière
[Termes IGN] essence d'arbre
[Termes IGN] image à haute résolution
[Termes IGN] image Formosat/COSMIC
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] série temporelleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La forêt a un rôle essentiel sur terre, que ce soit pour stocker le carbone et ainsi lutter contre le réchauffement climatique ou encore fournir un habitat à de nombreuses espèces. Or, la composition de la forêt (la localisation des essences ou leur diversité) a une influence sur les services écologiques rendus. Dans ce contexte, il est important de cartographier les forêts et les essences qui la composent. La télédétection, en particulier à partir d’images satellitaires, apparait comme le moyen le plus adéquat pour caractériser un vaste territoire. Avec l’arrivée de constellations satellitaires comme Sentinel-2 ou Landsat-8 et leur gratuité d’acquisition pour l’utilisateur, il devient possible d’envisager l’usage de séries temporelles d’images satellites à haute résolution spatiale, spectrale et temporelle à l’aide d’algorithmes d’apprentissage automatique. Si de nombreux travaux ont étudié le potentiel des images satellitaires pour identifier les essences, rares sont ceux qui utilisent des séries temporelles (plusieurs images par an) avec une haute résolution spatiale et en tenant compte de l’autocorrélation spatiale des références, i.e. la ressemblance des échantillons spatialement proches les uns des autres. Or, en ne prenant pas en compte ce phénomène, des biais d’évaluation peuvent survenir et ainsi surestimer la qualité des modèles d’apprentissage. Il s’agit aussi de mieux cerner les verrous méthodologiques afin de comprendre pourquoi il peut être facile ou compliqué pour un algorithme d’identifier une essence d’une autre. L’objectif général de la thèse vise à étudier le potentiel et les verrous concernant la reconnaissance des essences forestières à partir des séries temporelles d’images satellite à haute résolution spatiale, spectrale et temporelle. Le premier objectif consiste à étudier la stabilité temporelle des prédictions à partir d’une archive de neuf ans du satellite Formosat-2. Plus particulièrement, les travaux portent sur la mise en place d’une méthode de validation qui soit le plus fidèle à la qualité observée des cartographies. Le second objectif s’intéresse au lien entre les évènements phénologiques in situ (pousse des feuilles en début de saison, ou perte et coloration des feuilles en fin de saison) et ce qui est observable par télédétection. Outre la capacité de détecter ces évènements, il sera étudié si ce qui permet aux algorithmes de différencier les essences les unes des autres est lié à des comportements spécifiques par espèce. Note de contenu : 1- Introduction
2- Etude de la stabilité spatiale et statistique des prédictions
3- Etude de l’impact de l’autocorrélation spatiale
4- Etude et apport de la phénologie
5- Partage des outils et des données : assurer une reproductibilité des travaux
6- Conclusion généraleNuméro de notice : 28326 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Agrosystèmes, Écosystèmes et Environnement : Toulouse : 2020 Organisme de stage : DYNAFOR DOI : sans En ligne : http://www.theses.fr/2020INPT0115 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98378 Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier / Benjamin Tardy (2019)
Titre : Méthodes d'exploitation de données historiques pour la production de cartes d'occupation des sols à partir d'images de télédétection et en absence de données de référence de la période à cartographier Type de document : Thèse/HDR Auteurs : Benjamin Tardy, Auteur ; Jordi Inglada, Directeur de thèse Editeur : Toulouse : Université de Toulouse 3 Paul Sabatier Année de publication : 2019 Importance : 228 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du doctorat de l'Université Toulouse 3 Paul Sabatier, Spécialité Surfaces et interfaces continentales, HydrologieLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement du territoire
[Termes IGN] apprentissage automatique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification de Dempster-Shafer
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance urbaine
[Termes IGN] fusion de données
[Termes IGN] historique des données
[Termes IGN] image Formosat/COSMIC
[Termes IGN] image Sentinel-MSI
[Termes IGN] série temporelleIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'étude des surfaces continentales constitue un enjeu majeur à l'échelle mondiale pour le suivi et la gestion des territoires, notamment en matière de répartition entre l'expansion urbaine, terres agricoles et espaces naturels. Dans ce contexte, les cartes d'OCcupation des Sols (OCS) caractérisant la couverture biophysique des terres émergées sont un atout essentiel pour l'analyse des surfaces continentales. Les algorithmes de classification supervisée permettent, à partir de séries temporelles annuelles d'images satellites et de données de référence, de produire automatiquement la carte de la période correspondante. Cependant, les données de référence sont une information coûteuse à obtenir surtout sur de grandes étendues. En effet, les campagnes de relevés terrain requièrent un fort coût humain, et les bases de données sont associées à de longs délais de mises à jour. De plus, ces données de référence disposent d'une validité limitée à la période correspondante, en raison des changements d'OCS. Ces changements concernent essentiellement l'expansion urbaine au détriment des surfaces naturelles, et les terres agricoles soumises à la rotation des cultures. L'objectif général de la thèse vise à proposer des méthodes de production de cartes d'OCS sans exploiter les données de référence de la période correspondante. Les travaux menés s'appuient sur un historique d'OCS. Cet historique regroupe toutes les informations disponibles pour la zone concernée : cartes d'OCS, séries temporelles, données de référence, modèles de classification, etc. Une première partie des travaux considère que l'historique ne contient qu'une seule période. Ainsi, nous avons proposé un protocole de classification naïve permettant d'exploiter un classifieur déjà entraîné sur une nouvelle période. Les performances obtenues ont montré que cette approche se révèle insuffisante, requérant ainsi des méthodes plus performantes. L'adaptation de domaine permet d'aborder ce type de problématique. Nous avons considéré deux approches : la projection de données via une analyse canonique des corrélations et le transport optimal. Ces deux approches permettent de projeter les données de l'historique afin de réduire les différences avec l'année à traiter. Néanmoins ces approches offrent des résultats équivalents à la classification naïve pour des coûts de production bien plus significatifs. Une seconde partie des travaux considère que l'historique contient au moins deux périodes de données. À partir des cartes supervisées de ces périodes précédentes, nous proposons une approche de mise à jour de la carte la plus récente, en modélisant les transitions des classes d'OCS. Nous avons également proposé l'utilisation d'un classifieur unique entraîné à partir de plusieurs périodes de l'historique. L'objectif de ce classifieur consiste à pouvoir s'adapter aux variations entre les années. Enfin nous avons mis en place des systèmes de vote afin de réaliser une fusion de classifieurs, chacun entraîné sur une période différente de l'historique. Ces systèmes offrent l'avantage d'être toujours plus performants que chaque classifieur individuellement. Nous avons comparé les performances de plusieurs approches allant du simple vote majoritaire à des fusions plus complexes: vote par confiance, vote par probabilités, vote Dempster-Shafer ainsi qu'une inférence bayésienne. Ces approches produisent des performances similaires, mais pour des coûts de production variables. Nous avons expérimenté ces approches sur deux jeux de données, l'un constitué de sept années d'images Formosat-2 et l'autre de trois années d'images Sentinel-2. Le premier offre une très bonne diversité temporelle mais sur une faible emprise spatiale. Inversement, le second couvre une large zone mais pour un historique limité. Nous avons conclu que les approches du classifieur unique ainsi qu'un simple vote majoritaire offrent de bonnes performances pour des faibles coûts indépendamment du jeu de données. Note de contenu : I- Introduction
II- Présentation du problème
III- Propositions de méthodes exploitant un unique domaine Source
IV- Propositions de méthodes exploitant de multiples domaines Source
V- Mise en oeuvre des méthodes pour une production opérationnelle sur de
grandes étendues
VI ConclusionsNuméro de notice : 28509 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Surfaces et interfaces continentales, Hydrologie : Toulouse 3 : 2019 Organisme de stage : CESBIO nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2019TOU30261 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97060 Missing-area reconstruction in multispectral images under a compressive sensing perspective / Luca Lorenzi in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)PermalinkOutils de prétraitements des images optiques Kalideos / Bruno Lafrance in Revue Française de Photogrammétrie et de Télédétection, n° 197 (Juin 2012)Permalinkvol 31 n° 13 - July /2010 - Special issue : Satellite observations of the Wenchuan earthquake of 12 may 2008 (Bulletin de International Journal of Remote Sensing IJRS) / Ranjit SinghPermalinkThe Sichuan earthquake (1): satellite imagery for rapid response / Timo Balz in GIM international, vol 22 n° 10 (October 2008)PermalinkMapping of the 26 December disaster by using Formosat-2 images / M.D. Yang in International Journal of Remote Sensing IJRS, vol 28 n° 13-14 (July 2007)PermalinkLa panoplie SPOT image / Françoise de Blomac in SIG la lettre, n° 82 (décembre 2006)Permalink